首页 | 本学科首页   官方微博 | 高级检索  
     

基于GRNN-PNN神经网络的印铁缺陷分类方法
作者姓名:张志晟  张雷洪  王新月  李正礼  孙琳源  徐邦联
作者单位:上海理工大学,上海 200093
摘    要:目的针对在印铁过程中缺陷检测系统存在不同缺陷类型检测精度不高,对于产品整体质量无法实现智能判断的问题,基于GRNN-PNN神经网络,提出一种适用于印铁在线检测的分类算法。方法对平面印刷铁片进行小波变换提取低频信息,在低频信息中进行缺陷定位并对缺陷区域进行标记和分割。通过缺陷面积、周长等评价指数和缺陷形状构建GRNN神经网络,对缺陷进行分类。通过构建PNN神经网络智能化判别整体产品是否属于合格产品。结果 GRNN-PNN平均耗时0.69s,达到了厂方对于缺陷在线检测的响应时间要求。GRNN-PNN多分类的准确率为86%,能够对印铁过程中产生的主要缺陷进行分类。二分类的灵敏度为96%,可以准确地判断产品整体的合格性。在5%的椒盐噪声干扰下,准确率为63%,具有良好的鲁棒性。结论该设计能够对印铁缺陷进行精确的分类和智能的判断,GRNN-PNN神经网络可以在印铁过程中进一步提高检测精度,GRNN-PNN神经网络可帮助质检员及时判断生产质量。

关 键 词:缺陷检测  图像评估  神经网络  印铁技术  图像处理  
收稿时间:2019-12-02
修稿时间:2020-08-10
本文献已被 CNKI 等数据库收录!
点击此处可从《包装工程》浏览原始摘要信息
点击此处可从《包装工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号