首页 | 本学科首页   官方微博 | 高级检索  
     

基于模糊K-均值算法的模糊分类器设计
作者姓名:郭延芬  李泰
作者单位:东南大学信息科学与工程学院,南京,210018
摘    要:基于模糊K-均值算法的模糊分类器,就是把目前比较常用的模糊K-均值算法的聚类方法,再一次与模糊分类规则提取相结合而得到的一种分类器。它是一种很有效的模糊分类器,训练样本能正确的分类。在这种方法中,首先用模糊K-均值算法按剖分和覆盖的原则把训练样本分成群,并且每一群的中心和半径都被计算出来。然后,设计一个用模糊规则来表示分类的模糊系统。这样就有效地构建了一个能对训练样本比较准确分类的模糊分类器。用这种方法设计的分类器不需要预定义参数、训练时间较短、方法简单

关 键 词:模式识别  模糊分类器  模糊K-均值算法
文章编号:1000-3630(2007)-04-0701-03
收稿时间:2006-04-14
修稿时间:2006-08-06
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《声学技术》浏览原始摘要信息
点击此处可从《声学技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号