首页 | 本学科首页   官方微博 | 高级检索  
     


Quantifying the robustness of a broth-based model for predicting Listeria monocytogenes growth in meat and poultry products
Authors:Martino K G  Marks B P  Campos D T  Tamplin M L
Affiliation:Department of Biosystems and Agricultural Engineering, Michigan State University, A. W. Farrall Hall, East Lansing, Michigan 48824, USA.
Abstract:Given the importance of Listeria monocytogenes as a risk factor in meat and poultry products, there is a need to evaluate the relative robustness of predictive growth models applied to meat products. The U.S. Department of Agriculture-Agricultural Research Service Pathogen Modeling Program is a tool widely used by the food industry to estimate pathogen growth, survival, and inactivation in food. However, the robustness of the Pathogen Modeling Program broth-based L. monocytogenes growth model in meat and poultry application has not, to our knowledge, been specifically evaluated. In the present study, this model was evaluated against independent data in terms of predicted microbial counts and covered a range of conditions inside and outside the original model domain. The robustness index was calculated as the ratio of the standard error of prediction (root mean square error of the model against an independent data set not used to create the model) to the standard error of calibration (root mean square error of the model against the data set used to create the model). Inside the calibration domain of the Pathogen Modeling Program, the best robustness index for application to meat products was 0.37; the worst was 3.96. Outside the domain, the best robustness index was 0.40, and the worst was 1.22. Product type influenced the robustness index values (P < 0.01). In general, the results indicated that broth-based predictive models should be validated against independent data in the domain of interest; otherwise, significant predictive errors can occur.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号