首页 | 本学科首页   官方微博 | 高级检索  
     


An innovative configuration for thermoacoustically-driven pulse tube coolers
Authors:JY Hu  EC Luo  W Dai
Affiliation:a Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100080, China
b Graduate School of the Chinese Academy of Sciences, Beijing 100049, China
Abstract:Obtainable lowest temperature of a thermoacoustically-driven pulse tube cooler is generally limited by the pressure ratio provided by the thermoacoustic engine with helium as working gas. It is also known that a thermoacoustic engine filled with nitrogen can generally provide much larger pressure ratio and lower frequency than the same engine filled with helium. Here we introduce an innovative system configuration which uses an elastic membrane as the interface between the thermoacoustic engine subsystem and the pulse tube cooler subsystem. The membrane can transport acoustic work from the engine to the cooler, and meanwhile separate the working gases used in respective subsystems. Through this way, it is possible for the engine to operate with nitrogen to provide larger pressure ratio and more suitable frequency for the pulse tube cooler which can still use helium as the working gas. To test this idea, a thermoacoustically-driven pulse tube cooler was built. With the innovative configuration, the pulse tube cooler reached a lowest temperature of 139 K. On the other hand, without the membrane, the PTC only achieved a lowest temperature of 186 K when using nitrogen and 145 K with helium for both the PTC and the engine.
Keywords:Thermoacoustic engine  Pulse tube cooler  Elastic membrane
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号