首页 | 本学科首页   官方微博 | 高级检索  
     

无逆矩阵在线序列极限学习机*
引用本文:左鹏玉,王士同. 无逆矩阵在线序列极限学习机*[J]. 计算机科学与探索, 2020, 14(1): 117-124
作者姓名:左鹏玉  王士同
作者单位:江南大学 数字媒体学院,江苏 无锡 214122;江南大学 数字媒体学院,江苏 无锡 214122
基金项目:The National Natural Science Foundation of China under Grant No. 61572236 (国家自然科学基金)
摘    要:无逆矩阵极限学习机只能以批量学习方式进行训练,将其拓展为无逆矩阵在线学习版本,提出了无逆矩阵在线序列极限学习机算法(IOS-ELM).所提算法增加训练样本时,利用Sherman Morrison Woodbury公式对新增样本数据后的模型进行更新,直接计算出新增隐含层输出权重,避免对已经分析过的训练样本的输出权重进行重...

关 键 词:无逆矩阵  极限学习机  在线序列学习  神经网络

Inverse-Matrix-Free Online Sequential Extreme Learning Machine
ZUO Pengyu,WANG Shitong. Inverse-Matrix-Free Online Sequential Extreme Learning Machine[J]. Journal of Frontier of Computer Science and Technology, 2020, 14(1): 117-124
Authors:ZUO Pengyu  WANG Shitong
Affiliation:(School of Digital Media,Jiangnan University,Wuxi,Jiangsu 214122,China)
Abstract:Since the existing inverse-matrix-free extreme learning machine(IF-ELM) only works well in batched way, this paper extends it into its inverse-matrix-free online sequential version called the inverse-matrix-free online sequential extreme learning machine(IOS-ELM). When the proposed algorithm increases the training samples, the Sherman Morrison Woodbury formula is used to update the model, and the newly added hidden layer output weights are directly calculated to avoid the iterative calculation of output weight of analysed training samples. The detailed derivations of the proposed machine IOS-ELM are accordingly given. The experimental results on different types and sizes of datasets show that IOS-ELM indeed is very suitable for the datasets which are gradually generated in an online way, in the sense of both fast training and promising performance.
Keywords:inverse-matrix-free  extreme learning machine  online sequential learning  neural networks
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号