首页 | 本学科首页   官方微博 | 高级检索  
     


Small Vertex Cover makes Petri Net Coverability and Boundedness Easier
Authors:M. Praveen
Affiliation:1. The Institute of Mathematical Sciences, Chennai, India
Abstract:The coverability and boundedness problems for Petri nets are known to be Expspace-complete. Given a Petri net, we associate a graph with it. With the vertex cover number k of this graph and the maximum arc weight W as parameters, we show that coverability and boundedness are in ParaPspace. This means that these problems can be solved in space $\mathcal{O} ({\mathit{ef}}(k, W){\mathit{poly}}(n) )$ , where ef(k,W) is some super-polynomial function and poly(n) is some polynomial in the size of the input n. We then extend the ParaPspace result to model checking a logic that can express some generalizations of coverability and boundedness.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号