首页 | 本学科首页   官方微博 | 高级检索  
     

基于模糊马尔可夫场的脑部MR图像分割算法
引用本文:李彬,陈武凡,颜刚. 基于模糊马尔可夫场的脑部MR图像分割算法[J]. 计算机工程与应用, 2007, 43(7): 14-16,19
作者姓名:李彬  陈武凡  颜刚
作者单位:南方医科大学,生物医学工程学院,广州,510515;南方医科大学,生物医学工程学院,广州,510515;南方医科大学,生物医学工程学院,广州,510515
基金项目:国家重点基础研究发展计划(973计划)
摘    要:
在传统马尔可夫场模型的基础上,建立了模糊马尔可夫场模型。通过对模型的分析得出图像像素对不同类的隶属度计算公式,提出了一种高效、无监督的图像分割算法,从而实现了对脑部MR图像的精确分割。通过对模拟脑部MR图像和临床脑部MR图像分割实验,表明新算法比传统的基于马尔可夫场的图像分割算法和模糊C-均值等图像分割算法有更精确的图像分割能力。

关 键 词:磁共振图像  图像分割  模糊马尔可夫场
文章编号:1002-8331(2007)07-0014-03
修稿时间:2006-11-01

Novel algorithm for segmentation of brain MR images using fuzzy Markov random field
LI Bin,CHEN Wu-fan,YAN Gang. Novel algorithm for segmentation of brain MR images using fuzzy Markov random field[J]. Computer Engineering and Applications, 2007, 43(7): 14-16,19
Authors:LI Bin  CHEN Wu-fan  YAN Gang
Affiliation:School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
Abstract:
In this paper,a fuzzy Markov Random Field(MRF) model is developed based on the conventional MRF model.By analyzing the fuzzy MRF model,the formula of determining the membership values for each voxel to indicate the partial volume degree is derived.We also propose an efficient and unsupervised algorithm to realize the accurate segmentation for MR brain images.The simulated brain images and real clinical images are selected to test the proposed algorithm.The experimental results show that the proposed algorithm can segment the brain images more accurately than the conventional model-based algorithms and the fuzzy C-mean do as well.
Keywords:Magnetic Resonance images   image segmentation    fuzzy Markov random field
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号