首页 | 本学科首页   官方微博 | 高级检索  
     


Surfactant mediated enhanced glycerol uptake and hydrogen production from biodiesel waste using co-culture of Enterobacter aerogenes and Clostridium butyricum
Affiliation:1. Institut national de la recherche scientifique, Centre – Eau Terre Environnement, 490, Rue de la Couronne, Québec, QC, G1K 9A9, Canada;2. Centre de recherche industrielle du Québec (CRIQ), Québec, QC, Canada;1. School of Energy Science and Engineering, Central South University, Changsha, Hunan 410083, China;2. Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, IL 61801, USA;1. Centre for Energy and Environment, Malaviya National Institute of Technology, Jaipur, 302017, India;2. Civil Engineering Department, Malaviya National Institute of Technology, Jaipur, 302017, India;1. Department of Electrical Engineering, Kermanshah University of Technology, Kermanshah, Iran;2. Electrical Engineering Faculty, Sahand University of Technology, Tabriz, Iran;1. University School of Chemical Technology, GGS IP University, Delhi, India;2. Department of Chemical Engineering, IIT, Delhi, India;1. Molecular Biochemistry Laboratory, Materials and Surface Science Institute, Department of Chemical and Environmental Sciences, University of Limerick, Limerick, Ireland;2. Department of Chemical Engineering, SSN College of Engineering, Kalavakkam, Tamilnadu, India
Abstract:In the present study, Tween 80, a non-ionic surfactant, has been used for enhanced hydrogen production by crude glycerol bioconversion using co-culture of Enterobacter aerogenes and Clostridium butyricum. The purpose of introducing the surfactant was to decrease the crude glycerol viscosity, so that apparent solubility and bioavailability of glycerol could be improved at the expenses of pretreatment steps. Experiments were planned using central composite design (CCD); crude glycerol and Tween 80 concentrations were optimized whereas, hydrogen production, glycerol utilization and viscosity of the media were considered as responses. The response surface for quadratic model showed, Tween 80 concentration had significant effect (p < 0.05) on all the three responses. Using the optimized conditions at 17.5 g/L crude glycerol and 15 mg/L Tween 80, hydrogen production reached a maximum of 32.1 ± 0.03 mmol/L of medium. The increase in hydrogen production was around 1.25-fold in presence of Tween 80 in comparison to its absence with 25.56 ± 0.91 mmol/L production. Selected optimum conditions were also validated against absence of crude glycerol (4.69 ± 0.76), with pretreated crude glycerol (20.06 ± 0.51) and across mono-culture system (15.43 ± 0.79 to 22.14 ± 0.94). Introduction of Tween 80 to the fermentation medium improved the glycerol utilization rate, resulting in increased hydrogen production and eliminated pretreatment steps.
Keywords:Co-culture  Crude glycerol  Hydrogen  Tween 80  Viscosity  CG"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kwrd0040"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  Crude glycerol  CCD"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kwrd0050"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  central composite design  RSM"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kwrd0060"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  response surface methodology  ANOVA"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kwrd0070"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  analysis of variance  TCD"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kwrd0080"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  thermal conductivity detector  FID"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kwrd0090"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  flame ionization detector
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号