首页 | 本学科首页   官方微博 | 高级检索  
     


A spectral model for transient heat flow in a double U-tube geothermal heat pump system
Affiliation:1. Faculty of Civil Engineering and Geosciences, Computational Mechanics, Delft University of Technology, P.O. Box 5048, 2600 GA Delft, The Netherlands;2. CERENA – Centre for Natural Resources and the Environment, Instituto Superior Técnico, Lisbon Technical University, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal;1. Andalusian Institute for Earth System Research, Universidad de Granada, Av. del Mediterráneo s/n., 18006 Granada, Spain;2. Universidad de Málaga, Escuela Técnica Superior de Ingeniería Industrial, Campus de Teatinos, 29071 Málaga, Spain;1. Department of Chemical Engineering, National Taiwan University of Science and Technology, 43, Keelung Rd., Sec. 4, Taipei 106-07, Taiwan;2. Department of Chemical Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS Keputih Sukolilo, Surabaya 60111, Indonesia;3. Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia;4. Department of Chemical Engineering, University of San Carlos – Talamban Campus, Nasipit, Talamban, Cebu City 6000, Philippines
Abstract:
This paper introduces a semi-analytical model based on the spectral analysis method for the simulation of transient conductive-convective heat flow in an axisymmetric shallow geothermal system consisting of a double U-tube borehole heat exchanger embedded in a soil mass. The proposed model combines the exactness of the analytical methods with an important extent of generality in describing the geometry and boundary conditions of the numerical methods. It calculates the temperature distribution in all involved borehole heat exchanger components and the surrounding soil mass using the fast Fourier transform, for the time domain; and the complex Fourier and Fourier-Bessel series, for the spatial domain. Numerical examples illustrating the model capability to reconstruct thermal response test data together with parametric analysis are given. The CPU time for calculating temperature distributions in all involved components, pipe-in, pipe-out, grout, and soil, using 16,384 FFT samples, for the time domain, and 100 Fourier-Bessel series samples, for the spatial domain, was in the order of 3 s in a normal PC. The model can be utilized for forward calculations of heat flow in a double U-tube geothermal heat pump system, and can be included in inverse calculations for parameter identification of shallow geothermal systems.
Keywords:Borehole heat exchanger  GSHP  TRT  Spectral analysis  FFT
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号