首页 | 本学科首页   官方微博 | 高级检索  
     


Thermal efficiency analysis of the cascaded latent heat/cold storage with multi-stage heat engine model
Affiliation:1. Institute of Engineering Thermophysics, Shanghai Jiao Tong University, Shanghai 200240, China;2. College of Pipeline and Civil Engineering, China University of Petroleum, Qingdao 266580, China;1. College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China;2. National Engineering Laboratory for Wheat and Corn Further Processing, Zhengzhou 450001, China;1. Universidade Federal do ABC, UFABC, Santo André, Brazil;2. Universidade Federal da Bahia, UFBA, Salvador, Brazil;1. Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia;2. Faculty of Electronics and Computer Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
Abstract:The cascaded thermal storage technique has emerged as an important solution for efficient conversion and utilization of thermal energies. In this paper, an exergy optimization was performed for cascaded latent cold/heat storage using multi-stage heat engine model. The optimization solution for both heat storage and cold storage systems was obtained, which was used for guiding the selection of PCMs with two examples presented. Cascaded thermal storage with increased stage number can not only extend temperature band for multi-grade thermal energy, but also reduce the exergy of the outlet HTF. It was found that heat transfer enhancement (improving NTU) is very necessary for a cascaded thermal storage system. The COP of cold energy may be greater than 1, which is also higher than that of heat for the same temperature difference in a cascaded thermal storage system. The increased environment temperature improves the COP of the cascaded cold storage (from 0.54 to 0.68) but reduces that of the cascaded heat storage (from 0.42 to 0.366). In the practical design of the cascaded thermal storage system, the stage number should be determined by balancing economics and system complexity.
Keywords:Thermal storage  Phase change material  Exergy optimization  Heat engine
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号