首页 | 本学科首页   官方微博 | 高级检索  
     


Ethanol production from halophyte Juncus maritimus using freezing and thawing biomass pretreatment
Affiliation:1. Biocatalysis and Industrial Enzymes Group, Laboratory of Microbial, Ecology and Technology, National Institute of Applied Sciences and Technology, Carthage University, BP 676, 1080 Tunis Cedex, Tunisia;2. Laboratory of Animal and Food Resources, National Agronomic Institute of Tunisia, Carthage University, 43 Av. Ch. Nicolle, 1082 BelvedereTunis, Tunisia;1. Department of Chemical Engineering, National Taiwan University of Science and Technology, 43, Keelung Rd., Sec. 4, Taipei 106-07, Taiwan;2. Department of Chemical Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS Keputih Sukolilo, Surabaya 60111, Indonesia;3. Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia;4. Department of Chemical Engineering, University of San Carlos – Talamban Campus, Nasipit, Talamban, Cebu City 6000, Philippines;1. Andalusian Institute for Earth System Research, Universidad de Granada, Av. del Mediterráneo s/n., 18006 Granada, Spain;2. Universidad de Málaga, Escuela Técnica Superior de Ingeniería Industrial, Campus de Teatinos, 29071 Málaga, Spain;1. Department of Mechanical Engineering, Recep Tayyip Erdoğam University, 52349 Rize, Turkey;2. Department of Mechanical Engineering, Yildiz Technical University, 34349 Besiktas, Istanbul, Turkey;3. Department of Mechanical Engineering, Istanbul Aydın University, 34455 Florya, Istanbul, Turkey
Abstract:Juncus maritimus contains (41.5 ± 0.3)% cellulose and (31.34 ± 0.2)% hemicellulose on dry solid (DS) basis and has the potential to serve as a low cost feedstock for ethanol production. Dilute acid or freezing/thawing pretreatments and enzymatic saccharification were evaluated for conversion of halophyte plant from J. maritimus cellulose and hemicelluloses to monomeric sugars. The maximum concentration of released glucose from J. maritimus (53.78 ± 3.24) g L−1) by Freezing/thawing pretreatment and enzymatic saccharification (55 °C, pH 5.0 and 48 h) using CellicCTec2 from Novozymes and (49.14 ± 5.24) g L−1 obtained by dilute acid pretreatment. The maximum yield of ethanol from acid pretreated enzyme saccharified J. maritimus hydrolyzate by Saccharomyces cerevisiae strain was (84.28 ± 5.11)% of the theoretical yield with a productivity of (0.88 ± 0.16)g L−1 h−1. It was (90.87 ± 1.94)% of the theoretical yield with a productivity of (1.04 ± 0.10) g L−1h−1 for freezing/thawing pretreated plant and enzymatic hydrolysis by CellicCTec2.
Keywords:Dilute acid pretreatment  Freezing/thawing pretreatment  Enzymatic saccarification  Alcoholic fermentation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号