首页 | 本学科首页   官方微博 | 高级检索  
     


Transient Hot Strip (THS) Method: Uncertainty Assessment
Authors:U. Hammerschmidt  W. Sabuga
Affiliation:(1) Physikalisch-Technische Bundesanstalt, Bundesallee 100, D-38116 Braunschweig, Germany
Abstract:The transient hot strip (THS) method can be used to measure simultaneously the thermal conductivity lambda and diffusivity a of dielectrics within a few minutes. However, although the method has been known for 20 years, there is no complete assessment of its uncertainty. First, the underlying complex mathematical model makes any error analysis a tedious and complicated task. Secondly, the ISO Guide to the Expression of Uncertainty in Measurement does not apply directly because of the classical model's implicit character. In the present paper, the combined standard uncertainty u of the THS method has been determined by applying two different models. First, we start from the classical nonlinear model. The major sources of errors are analyzed, namely, the ideal model errors, the evaluation errors, and the measurement errors. Next, a newly developed numerical procedure combines all the components in a way that the resultant standard uncertainties of the nonlinear model, u(lambda)/lambda=2.6% and u(a)/a=11%, comply as closely as possible with the principles of the ISO Guide. Second, we start from the recently presented linear expression of the THS mathematical model that is briefly discussed. Since this approximation is explicit in both measurands, the uncertainties, u(lambda)/lambda=2.5% and u(a)/a=11%, are determined in full accordance with the ISO guide. The uncertainty in thermal conductivity is experimentally assessed against the standard reference CRM 039 (Pyrex). The results obtained are in excellent agreement with the theoretical values.
Keywords:linear working equation  nonlinear working equation  standard uncertainty  thermal conductivity  thermal diffusivity  transient hot strip method
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号