首页 | 本学科首页   官方微博 | 高级检索  
     

基于粗糙集和贝叶斯分类器的变电站故障诊断
引用本文:苏宏升,李群湛,郝文斌. 基于粗糙集和贝叶斯分类器的变电站故障诊断[J]. 计算机工程与设计, 2006, 27(16): 3099-3101
作者姓名:苏宏升  李群湛  郝文斌
作者单位:西南交通大学,电气工程学院,四川,成都,610031;西南交通大学,电气工程学院,四川,成都,610031;西南交通大学,电气工程学院,四川,成都,610031
摘    要:
以变电站的开关继电保护信息为基础,提出了一种基于粗糙集理论和贝叶斯分类器的变电站故障诊断方法.首先利用粗糙集理论的知识约简和处理不确定信息的能力,对变电站的故障诊断知识进行挖掘,实行属性优选,再运用朴素贝叶斯分类器对故障诊断知识进行模式识别.将其应用于变电站故障诊断专家系统中,应用结果显示了该方法能有效地缩小问题求解规模和较强的抗干扰能力,是一种有效的变电站故障诊断方法.

关 键 词:变电站  粗糙集  贝叶斯分类器  故障诊断  预测
文章编号:1000-7024(2006)16-3099-03
收稿时间:2005-06-01
修稿时间:2005-06-01

Research on fault diagnosis method of substation based on rough set and bayes classifier
SU Hong-sheng,LI Qun-zhan,HAO Wen-bin. Research on fault diagnosis method of substation based on rough set and bayes classifier[J]. Computer Engineering and Design, 2006, 27(16): 3099-3101
Authors:SU Hong-sheng  LI Qun-zhan  HAO Wen-bin
Affiliation:Institute of Electrical Engineering, Southwest Jiaotong University, Chengdu 610031, China
Abstract:
On the basis of switch and relay protecting information of substation, an approach to substation fault diagnosis is proposed based on rough sets theory and bayesian classifier. Namely, rough set is applied to mine fault diagnosis ,knowledge of substation and implement predominant attributes selection based on its abilities of knowledge reduction and disposing indeterminate information, then fault is identified though bayesian classifier. Eventually, being used in fault diagnosis expert systems of substation, the application results show the approach minimizes the problem solving scale and owns excellent anti-inference capabilities, and is an effective method for fault diagnosis of substation.
Keywords:substation   rough set   bayesian classifier   fault diagnosis   prediction
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号