首页 | 本学科首页   官方微博 | 高级检索  
     

基于蚁群遗传算法的BP神经网络摄像机标定
引用本文:江祥奎,汪友明. 基于蚁群遗传算法的BP神经网络摄像机标定[J]. 机械与电子, 2013, 0(12): 60-62
作者姓名:江祥奎  汪友明
作者单位:西安邮电大学自动化学院
基金项目:西安邮电大学青年教师科研基金资助项目(ZL2012-14)
摘    要:摄像机标定是从二维图像提取三维空间信息的关键步骤。为了有效解决传统摄像机标定算法中的多参数和计算费时费力等问题,提高摄像机标定的精度和速度,首次将蚁群遗传算法应用于摄像机标定中。方法初期采用遗传算法过程生成信息素分布,后期利用蚁群算法正反馈求精确解,最后用优化后的BP神经网络来进行摄像机标定,充分发挥遗传算法的全局搜索能力和蚁群算法的正反馈收敛优势。

关 键 词:摄像机标定  神经网络  蚁群遗传算法

BP Neural Network Camera Calibration Based on Ant Colony Genetic Algorithm
JIANG Xiang-kui;WANG You-ming. BP Neural Network Camera Calibration Based on Ant Colony Genetic Algorithm[J]. Machinery & Electronics, 2013, 0(12): 60-62
Authors:JIANG Xiang-kui  WANG You-ming
Affiliation:JIANG Xiang-kui;WANG You-ming;School of Automation,Xi’an University of Posts and Telecommunications;
Abstract:Camera calibration is the key procedure for extracting three dimensional information from two dimensional image. In order to solve the problem of multi- parameters and calculation wasting time and energy, and promote the accuracy and speed of camera calibration, the paper firstly applies ant colony genetic algorithm to camera cali- bration. This method uses the genetic algorithm to process the early generation information grain dis- tribution,later using positive feedback of ant colo- ny algorithm for the exact solution, finally using the optimized BP neural network for camera cali- bration, which give full play to the global search ability of genetic algorithm and the positive feed- back convergence advantage of ant colony algorithm.
Keywords:camera calibration  neural networkant colony genetic algorithm
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号