首页 | 本学科首页   官方微博 | 高级检索  
     


Modeling Grain Size and Strain Rate in Linear Friction Welded Waspaloy
Authors:Ahmad Chamanfar  Mohammad Jahazi  Javad Gholipour  Priti Wanjara  Stephen Yue
Affiliation:1. Department of Materials Engineering, McGill University, 3610 University Street, Montreal, QC, H3A 0C5, Canada
2. Metallic Products Manufacturing, National Research Council Canada Aerospace, 5145 Decelles Avenue, Montreal, QC, H3T 2B2, Canada
3. Département de Génie Mécanique, école de Technologie Supérieure, 1100 rue Notre-Dame Ouest, Montreal, QC, H3C 1K3, Canada
Abstract:The high-temperature deformation behavior of the Ni-base superalloy, Waspaloy, using uniaxial isothermal compression testing was investigated at temperatures above the γ′ solvus, 1333 K, 1373 K, and 1413 K (1060 °C, 1100 °C, and 1140 °C) for constant true strain rates of 0.001, 0.01, 0.1, and 1 s?1 and up to a true strain of 0.83. Flow softening and microstructural investigation indicated that dynamic recrystallization took place during deformation. For the investigated conditions, the strain rate sensitivity factor and the activation energy of hot deformation were 0.199 and 462 kJ/mol, respectively. Constitutive equations relating the dynamic recrystallized grain size to the deformation temperature and strain rate were developed and used to predict the grain size and strain rate in linear friction-welded (LFWed) Waspaloy. The predictions were validated against experimental findings and data reported in the literature. It was found that the equations can reliably predict the grain size of LFWed Waspaloy. Furthermore, the estimated strain rate was in agreement with finite element modeling data reported in the literature.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号