首页 | 本学科首页   官方微博 | 高级检索  
     

基于免疫粒子群优化的聚类算法
引用本文:郑晓鸣,吕士颖,王晓东. 基于免疫粒子群优化的聚类算法[J]. 计算机工程, 2008, 34(15): 179-181
作者姓名:郑晓鸣  吕士颖  王晓东
作者单位:福州大学数学与计算机学院,福州,350002;福州大学数学与计算机学院,福州,350002;福州大学数学与计算机学院,福州,350002
基金项目:福建省自然科学基金资助项目(A0510008)
摘    要:
K均值算法简单快速,但其结果容易受初始聚类中心影响,并且容易陷入局部极值。该文结合粒子群优化算法和免疫系统中的免疫调节机制与免疫记忆功能对K均值算法进行改进,提出一种基于免疫粒子群优化的聚类算法。实验结果证明,该算法解决了K均值算法存在的对初值敏感的缺点,聚类结果稳定,而且比基于粒子群优化的聚类算法具有更好的聚类效果。

关 键 词:聚类  免疫粒子群优化  K均值  粒子群优化

Clustering Algorithm Based on Immune Particle Swarm Optimization
ZHENG Xiao-ming,LV Shi-ying,WANG Xiao-dong. Clustering Algorithm Based on Immune Particle Swarm Optimization[J]. Computer Engineering, 2008, 34(15): 179-181
Authors:ZHENG Xiao-ming  LV Shi-ying  WANG Xiao-dong
Affiliation:(College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350002)
Abstract:
K-means algorithm is simple and fast, however its result is affected by the initial clustering center and easily falls into the local optimum. This paper combines Particle Swarm Optimization(PSO) and adjusting mechanism and the immune memory function of immune system to improve K-means algorithm, and proposes a clustering algorithm based on Immune Particle Swarm Optimization algorithm(IM-PSO-KMEANS). The experiments show that the IM-PSO-KMEANS algorithm overcomes the problems of K-means algorithm, and the results of clustering are better than algorithm based on PSO.
Keywords:clustering  Immune-PSO  K-means  Particle Swarm Optimization(PSO)
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《计算机工程》浏览原始摘要信息
点击此处可从《计算机工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号