首页 | 本学科首页   官方微博 | 高级检索  
     


Early detection of toxigenic fungi on maize by hyperspectral imaging analysis
Authors:A. Del Fiore  M. Reverberi  F. Pinzari  A.A. Fabbri  C. Fanelli
Affiliation:
  • a Laboratorio Innovazione Agro-Industriale, ENEA, C.R. Casaccia, via Anguillarese 301, 00123 Santa Maria di Galeria Roma, Italy
  • b Dipartimento di Biologia Vegetale, Università “Sapienza”, Largo Cristina di Svezia 24, 00165 Roma, Italy
  • c Istituto di Scienze delle Produzioni Alimentari, CNR, via Amendola 122/o 70126 Bari, Italy
  • d Istituto Centrale per il Restauro e la Conservazione del Patrimonio Archivistico e Librario, Laboratorio di Biologia, Via Milano, 76. 00184, Roma, Italy
  • e Dipartimento di Ingegneria Chimica Materiali Ambiente, Sapienza Università di Roma, Via Eudossiana 18, 00184 Roma, Italy
  • Abstract:Fungi can grow on many food commodities. Some fungal species, such as Aspergillus flavus, Aspergillus parasiticus, Aspergillus niger and Fusarium spp., can produce, under suitable conditions, mycotoxins, secondary metabolites which are toxic for humans and animals. Toxigenic fungi are a real issue, especially for the cereal industry. The aim of this work is to carry out a non destructive, hyperspectral imaging-based method to detect toxigenic fungi on maize kernels, and to discriminate between healthy and diseased kernels. A desktop spectral scanner equipped with an imaging based spectrometer ImSpector- Specim V10, working in the visible-near infrared spectral range (400-1000 nm) was used. The results show that the hyperspectral imaging is able to rapidly discriminate commercial maize kernels infected with toxigenic fungi from uninfected controls when traditional methods are not yet effective: i.e. from 48 h after inoculation with A. niger or A. flavus.
    Keywords:Food commodities   Toxigenic fungi   Maize   Early detection   Non destructive analysis   Hyperspectral imaging
    本文献已被 ScienceDirect 等数据库收录!
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号