Early detection of toxigenic fungi on maize by hyperspectral imaging analysis |
| |
Authors: | A. Del Fiore M. Reverberi F. Pinzari A.A. Fabbri C. Fanelli |
| |
Affiliation: | a Laboratorio Innovazione Agro-Industriale, ENEA, C.R. Casaccia, via Anguillarese 301, 00123 Santa Maria di Galeria Roma, Italyb Dipartimento di Biologia Vegetale, Università “Sapienza”, Largo Cristina di Svezia 24, 00165 Roma, Italyc Istituto di Scienze delle Produzioni Alimentari, CNR, via Amendola 122/o 70126 Bari, Italyd Istituto Centrale per il Restauro e la Conservazione del Patrimonio Archivistico e Librario, Laboratorio di Biologia, Via Milano, 76. 00184, Roma, Italye Dipartimento di Ingegneria Chimica Materiali Ambiente, Sapienza Università di Roma, Via Eudossiana 18, 00184 Roma, Italy |
| |
Abstract: | Fungi can grow on many food commodities. Some fungal species, such as Aspergillus flavus, Aspergillus parasiticus, Aspergillus niger and Fusarium spp., can produce, under suitable conditions, mycotoxins, secondary metabolites which are toxic for humans and animals. Toxigenic fungi are a real issue, especially for the cereal industry. The aim of this work is to carry out a non destructive, hyperspectral imaging-based method to detect toxigenic fungi on maize kernels, and to discriminate between healthy and diseased kernels. A desktop spectral scanner equipped with an imaging based spectrometer ImSpector- Specim V10, working in the visible-near infrared spectral range (400-1000 nm) was used. The results show that the hyperspectral imaging is able to rapidly discriminate commercial maize kernels infected with toxigenic fungi from uninfected controls when traditional methods are not yet effective: i.e. from 48 h after inoculation with A. niger or A. flavus. |
| |
Keywords: | Food commodities Toxigenic fungi Maize Early detection Non destructive analysis Hyperspectral imaging |
本文献已被 ScienceDirect 等数据库收录! |
|