首页 | 本学科首页   官方微博 | 高级检索  
     

无氰电镀液中超声电沉积耐腐蚀纳米晶铜镀层
引用本文:郑精武,陈意顺,付永成,张栓,乔梁,蔡伟,唐谊平,衣晓飞,陈静武,李旺昌,应耀,余靓,刘友好,黄秀莲,车声雷.无氰电镀液中超声电沉积耐腐蚀纳米晶铜镀层[J].稀有金属材料与工程,2022,51(3):827-834.
作者姓名:郑精武  陈意顺  付永成  张栓  乔梁  蔡伟  唐谊平  衣晓飞  陈静武  李旺昌  应耀  余靓  刘友好  黄秀莲  车声雷
作者单位:浙江工业大学 材料科学与工程学院 磁电材料研究所,浙江 杭州 310014,浙江工业大学 材料科学与工程学院 磁电材料研究所,浙江 杭州 310014,浙江工业大学 材料科学与工程学院 磁电材料研究所,浙江 杭州 310014;中科芯集成电路有限公司,江苏 无锡 214072,浙江工业大学 材料科学与工程学院 磁电材料研究所,浙江 杭州 310014,浙江工业大学 材料科学与工程学院 磁电材料研究所,浙江 杭州 310014,浙江工业大学 材料科学与工程学院 磁电材料研究所,浙江 杭州 310014,浙江工业大学 材料科学与工程学院 磁电材料研究所,浙江 杭州 310014,大地熊新材料股份有限公司 稀土永磁材料国家重点实验室,安徽 合肥 231500,大地熊新材料股份有限公司 稀土永磁材料国家重点实验室,安徽 合肥 231500,浙江工业大学 材料科学与工程学院 磁电材料研究所,浙江 杭州 310014,浙江工业大学 材料科学与工程学院 磁电材料研究所,浙江 杭州 310014,浙江工业大学 材料科学与工程学院 磁电材料研究所,浙江 杭州 310014,大地熊新材料股份有限公司 稀土永磁材料国家重点实验室,安徽 合肥 231500,大地熊新材料股份有限公司 稀土永磁材料国家重点实验室,安徽 合肥 231500,浙江工业大学 材料科学与工程学院 磁电材料研究所,浙江 杭州 310014
基金项目:国家自然科学基金项目(51871201);稀土永磁材料国家重点实验室编号SKLREPM17OF06;浙江省科技厅重点研发项目(2021C01172)
摘    要:通过超声辅助电沉积法,在无氰络合电镀液中以高阴极电流密度在钕铁硼磁体上电沉积获得纳米晶铜防护镀层,研究了不同超声波频率下的镀层形貌、晶粒尺寸、显微硬度和耐腐蚀性能。结果表明,随着超声波频率的增加,络合电镀液体系的铜电沉积有效阴极电流密度显著增加,相应的阴极电流效率也提高,从而获得致密的纳米晶铜镀层。在阴极电流密度为4.0 A·dm-2和超声波频率为40 kHz的条件下,能够获得平均晶粒尺寸为18.8 nm的铜镀层。超声辅助电沉积法还能促进烧结钕铁硼基体盲孔内的铜沉积,从而改善基体与镀层之间的结合力。在同样的镀层厚度下,烧结钕铁硼表面所沉积镀层的耐腐蚀性随超声波频率的提高而优化。

关 键 词:烧结钕铁硼  超声辅助  纳米晶铜  无氰电沉积  耐腐蚀性能
收稿时间:2021/1/14 0:00:00
修稿时间:2021/5/2 0:00:00

Corrosion-Resistant Nanocrystalline Cu Coating by Ultra-sonic Electrodeposition in Cyanide-Free Electrolyte
Zheng Jingwu,Chen Yishun,Fu Yongcheng,Zhang Shuan,Qiao Liang,Cai Wei,Tang Yiping,Yi Xiaofei,Chen Jingwu,Li Wangchang,Ying Yao,Yu Jing,Liu Youhao,Huang Xiulian and Che Shenglei.Corrosion-Resistant Nanocrystalline Cu Coating by Ultra-sonic Electrodeposition in Cyanide-Free Electrolyte[J].Rare Metal Materials and Engineering,2022,51(3):827-834.
Authors:Zheng Jingwu  Chen Yishun  Fu Yongcheng  Zhang Shuan  Qiao Liang  Cai Wei  Tang Yiping  Yi Xiaofei  Chen Jingwu  Li Wangchang  Ying Yao  Yu Jing  Liu Youhao  Huang Xiulian and Che Shenglei
Affiliation:Research Center of Magnetic and Electronic Materials, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China,Research Center of Magnetic and Electronic Materials, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China,Research Center of Magnetic and Electronic Materials, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China;China Key System & Integrated Circuit Co., Ltd, Wuxi 214072, China,Research Center of Magnetic and Electronic Materials, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China,Research Center of Magnetic and Electronic Materials, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China,Research Center of Magnetic and Electronic Materials, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China,Research Center of Magnetic and Electronic Materials, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China,State Key Laboratory of Rare Earth Permanent Magnet Materials, Earth-Panda Advance Magnetic Material Co., Ltd, Hefei 231500, China,State Key Laboratory of Rare Earth Permanent Magnet Materials, Earth-Panda Advance Magnetic Material Co., Ltd, Hefei 231500, China,Research Center of Magnetic and Electronic Materials, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China,Research Center of Magnetic and Electronic Materials, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China,Research Center of Magnetic and Electronic Materials, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China,State Key Laboratory of Rare Earth Permanent Magnet Materials, Earth-Panda Advance Magnetic Material Co., Ltd, Hefei 231500, China,State Key Laboratory of Rare Earth Permanent Magnet Materials, Earth-Panda Advance Magnetic Material Co., Ltd, Hefei 231500, China,Research Center of Magnetic and Electronic Materials, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
Abstract:The nanocrystalline Cu protective coating was obtained on the Nd-Fe-B magnet matrix in the cyanide-free electrolyte by the ultrasonic-assisted electrodeposition under high cathodic current density. The coating morphology, crystallite size, microhardness, and corrosion resistance of the Cu coatings were analyzed under different ultrasonic frequencies. Results show that with increasing the ultrasonic frequency, the effective cathodic current density of Cu electrodeposition in the complex electroplating solution system is increased remarkably, and the corresponding current efficiency is enhanced, thereby achieving the dense nanocrystalline Cu coating. Under the condition of the cathodic current density of 4.0 A·dm-2 and frequency of 40 kHz, the Cu coating with the crystallite of 18.8 nm in size can be obtained. The bonding strength between the Cu coating and sintered Nd-Fe-B matrix is improved via ultrasonic-assisted electrodeposition which promotes the electrodeposition in the blind holes of Nd-Fe-B matrix. The corrosion resistance of Cu-coated Nd-Fe-B materials with the same coating thickness is improved gradually with increasing the ultrasonic frequency.
Keywords:sintered Nd-Fe-B  ultrasonic-assisted  nanocrystalline Cu  cyanide-free electrodeposition  corrosion resistance
点击此处可从《稀有金属材料与工程》浏览原始摘要信息
点击此处可从《稀有金属材料与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号