首页 | 本学科首页   官方微博 | 高级检索  
     

自适应搜索区域的微粒群优化算法
引用本文:裴振奎,韩锦峰,李华,宋建伟. 自适应搜索区域的微粒群优化算法[J]. 计算机工程与设计, 2008, 29(14)
作者姓名:裴振奎  韩锦峰  李华  宋建伟
作者单位:中国石油大学(华东)计算机与通信工程学院,山东东营,257061;中国石油大学(华东)计算机与通信工程学院,山东东营,257061;中国石油大学(华东)计算机与通信工程学院,山东东营,257061;中国石油大学(华东)计算机与通信工程学院,山东东营,257061
摘    要:
基于基本微粒群优化算法搜索后期,众多微粒都拥挤在历史最优位置周围进行重复性无效搜索这一现象,提出一种改进的微粒群算法--自适应搜索区域的微粒群优化算法,其主要思想为:每当搜索进行到当前设定的一个最大迭代次数时(即,微粒在全局历史最优位置周围徘徊进行无效搜索时),在原搜索区域的基础上,重新构造一个较小的搜索区域,并重新初始化微粒,继续进行搜索,最终获得最优解.对3个常用标准测试函数进行优化计算,仿真结果表明,该算法具有比基本微粒群优化算法更好的优化性能.

关 键 词:微粒群优化算法  自适应  搜索区域  优化  微粒

Particle swarm optimization algorithm based on self-adaptive search area
PEI Zhen-kui,HAN Jin-feng,LI Hua,SONG Jian-wei. Particle swarm optimization algorithm based on self-adaptive search area[J]. Computer Engineering and Design, 2008, 29(14)
Authors:PEI Zhen-kui  HAN Jin-feng  LI Hua  SONG Jian-wei
Affiliation:PEI Zhen-kui,HAN Jin-feng,LI Hua,SONG Jian-wei(College of Computer , Communication Engineering,China University of Petroleum(East China),Dongying 257061,China)
Abstract:
Based on the phenomena that a lot of particles crowded around the best position and many particles repeated an ineffective search in search later period,an improved algorithm is proposed,which is called particle swarm optimization algorithm based on self-adaptive search area(SSAPSO).Its characteristic was that while a lot of particles crowded around the best position and repeated an ineffective search,there constructed a new less search area based on former one,initialized particles renewedly and continued ...
Keywords:particle swarm optimization algorithm  self-adaptive  search area  optimization  particles  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号