首页 | 本学科首页   官方微博 | 高级检索  
     

基于递归模糊神经网络的污水处理控制方法
引用本文:韩改堂,乔俊飞,韩红桂. 基于递归模糊神经网络的污水处理控制方法[J]. 化工学报, 2016, 67(3): 954-959. DOI: 10.11949/j.issn.0438-1157.20151898
作者姓名:韩改堂  乔俊飞  韩红桂
作者单位:1. 北京工业大学电子信息与控制工程学院, 北京 100124;2. 计算智能与智能系统北京市重点实验室, 北京 100124
基金项目:国家自然科学基金重点项目(61533002);国家自然科学基金杰出青年项目(61225016);中国博士后科学基金一等资助项目(2014M550017);北京市教育委员会科研计划项目(KZ201410005002,km201410005001);北京市朝阳区协同创新项目(ZH14000177);高等学校博士学科点专项科研基金(20131103110016)。
摘    要:针对污水处理过程具有非线性、大时变等问题,提出了一种基于递归模糊神经网络的多变量控制方法。该方法通过递归模糊神经网络控制器自适应地获得对操作变量的控制精度,控制器在常规BP学习算法的基础上采用学习率自适应学习算法且引入了动量项来训练网络参数,避免网络陷入局部最优,提高了网络对系统的控制精度。最后,基于仿真基准模型(BSM1)平台对第五分区中的溶解氧和第二分区中的硝态氮控制进行动态仿真实验,结果表明,与PID、前馈神经网络和常规递归神经网络相比,该方法能有效提高系统的自适应控制精度。

关 键 词:污水处理过程  递归模糊神经网络  控制  自适应学习算法  溶解氧   硝态氮  动态仿真  
收稿时间:2015-12-14
修稿时间:2015-12-24

Wastewater treatment control method based on recurrent fuzzy neural network
HAN Gaitang,QIAO Junfei,HAN Honggui. Wastewater treatment control method based on recurrent fuzzy neural network[J]. Journal of Chemical Industry and Engineering(China), 2016, 67(3): 954-959. DOI: 10.11949/j.issn.0438-1157.20151898
Authors:HAN Gaitang  QIAO Junfei  HAN Honggui
Affiliation:1. College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124, China;2. Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing 100124, China
Abstract:Due to the nonlinear and highly time-varying issues of wastewater treatment processes, a kind of multi-variable control method based on the recurrent fuzzy neural network (RFNN) is proposed. The proposed RFNN can obtain self-adaptive control accuracy of operating variables. The controller uses the learning rate on the basis of conventional BP learning algorithm on adaptive learning algorithm and the introduction of momentum to train network parameters, can avoid falling into local optimum network, which improved network control of the system accuracy. Finally, based on the benchmark simulation model (BSM1), experiments validate the effectiveness of the method that control the dissolved oxygen concentration in the fifth partition and nitrate nitrogen concentration in the second partition. Compared to PID, forward neural network and conventional recurrent neural network, the experimental results show that this control method can improve the adaptive control precision of the system.
Keywords:wastewater treatment process  recurrent fuzzy neural network  control  adaptive learning algorithm  dissolved oxygen  nitrate nitrogen  dynamic simulation  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《化工学报》浏览原始摘要信息
点击此处可从《化工学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号