含减震外挂墙板的装配式框架结构协同抗震性能研究 |
| |
引用本文: | 种迅,侯林兵,解琳琳,王心宇,陈曦. 含减震外挂墙板的装配式框架结构协同抗震性能研究[J]. 工程力学, 2021, 38(6): 209-217. DOI: 10.6052/j.issn.1000-4750.2020.07.0471 |
| |
作者姓名: | 种迅 侯林兵 解琳琳 王心宇 陈曦 |
| |
作者单位: | 合肥工业大学土木与水利工程学院,合肥 230009;北京建筑大学土木与交通工程学院,北京 100044;北京市建筑设计研究院有限公司,北京 100045 |
| |
基金项目: | 国家自然科学基金项目(51778201);中国地震局地震工程与工程振动重点实验室重点专项项目(2020EEEVL0405);北京建筑大学金字塔人才培养工程(JDYC20200306);“未来城市设计基金”资助项目 |
| |
摘 要: | 针对提出的一种围护-主体协同减震装配式结构新体系,即含减震外挂墙板的装配式框架结构,开展了抗震性能研究.基于试验提出了适用于该类结构的多尺度数值模拟方法;通过一栋RC框架结构明确了该类结构的协同减震机理;基于28个案例揭示了刚度比和屈服力比对其减震机理的影响规律.结果表明:多尺度数值模拟方法可较好模拟该类结构的损伤演化...
|
关 键 词: | 减震外挂墙板 U型阻尼器 协同减震机理 数值模拟 参数分析 |
收稿时间: | 2020-07-16 |
INVESTIGATION ON THE COLLABORATIVE SEISMIC PERFORMANCE OF PREFABRICATED FRAME STRUCTURES WITH ENERGY DISSIPATING CLADDING PANELS |
| |
Affiliation: | 1.School of Civil Engineering, Hefei University of Technology, Hefei 230009, China2.School of Civil and Transportation Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China3.Beijing Institute of Architectural Design, Beijing 100045, China |
| |
Abstract: | A novel prefabricated structural system, i.e. the frame structure with energy dissipating cladding panels, was proposed with an emphasis on the collaborative vibration reduction of the cladding panels and the main structure. To investigate the seismic performance of such structures, a multi-scale numerical simulation method was proposed based on a experiment. The collaborative mechanism of the vibration reduction was identified through an RC frame structure. The effects of the stiffness ratio and yield force ratio on such a mechanism were revealed based on 28 study cases. The results indicate that the multi-scale numerical simulation method can reflect the damage evolution mode and mechanical characteristics of such structures, and that the U-shaped dampers in the energy dissipating cladding panels yielded and started to dissipate energy before the main structure did. Therefore, the seismic response of the main structure and the damage to the beams and columns were effectively controlled without changing the damage evolution mode of the structure. With the increase of some critical design parameters (i.e., the stiffness ratio and yield force ratio), the damping effect on the inter-story drift ratio and the energy dissipated by the dampers was gradually increased. When such parameters reached certain values, the damping effect and the energy dissipated by the dampers were stabilized. The research results provided a useful reference for the development of high-performance structural systems with an emphasis on the collaboration of cladding panels and the main structure. |
| |
Keywords: | |
本文献已被 CNKI 万方数据 等数据库收录! |
| 点击此处可从《工程力学》浏览原始摘要信息 |
|
点击此处可从《工程力学》下载全文 |
|