首页 | 本学科首页   官方微博 | 高级检索  
     

基于核的多元区别分析算法的特征抽取及其在人脸识别中的应用
引用本文:吕冰,王士同. 基于核的多元区别分析算法的特征抽取及其在人脸识别中的应用[J]. 计算机应用, 2006, 26(11): 2781-2783
作者姓名:吕冰  王士同
作者单位:江南大学,信息工程学院,江苏,无锡,214122
摘    要:提出了一种基于核技术的求多元区别分析最佳解的K1PMDA算法,并把这一算法应用于人脸识别中。对线性人脸识别中存在两个突出问题:1、在光照、表情、姿态变化较大时,人脸图像分类是复杂的、非线性的;2、小样本问题,即当训练样本数量小于样本特征空间维数时,导致类内散布矩阵奇异。对于前一个问题,可以采用核技术提取人脸图像样本的非线性特征,对于后一个问题,采用加入一个扰动参数的扰动算法。通过对ORL,Yale Group B以及UMIST三个人脸库的实验表明,该算法是可行的、高效的。

关 键 词:核技术  多元区别分析  小样本问题  人脸识别
文章编号:1001-9081(2006)11-2781-03
收稿时间:2006-05-22
修稿时间:2006-05-222006-07-22

Optimal feature extraction and face recognition based on kernel machine-based one-parameter multiple discriminant analysis
Lü Bing,WANG Shi-tong. Optimal feature extraction and face recognition based on kernel machine-based one-parameter multiple discriminant analysis[J]. Journal of Computer Applications, 2006, 26(11): 2781-2783
Authors:Lü Bing  WANG Shi-tong
Affiliation:School of lnformation Technology, Southern Yangtze University, Wuxi Jiangsu 214122, China
Abstract:A new algorithm, namely kernel machine-based one-parameter multiple discriminant analysis (K1PMDA), to extract optimal discriminant features was proposed and applied to face recognition. There are two problems in linear face recognition: One is that the distribution of face images with different pose, illumination and face expression is complex and nonlinear. The other is the small sample size (S3) problem. This problem occurs when the number of training samples is smaller than the dimensionality of feature vectors, which results in a singular within-class scatter matrix. For the former, kernel technique can be used to extract nonlinear feature, and for the latter, a disturbed parameter was introduced to overcome S3 problem. Three databases, namely ORL, Yale Group B, and UMIST were selected for evaluation. The results are encouraging.
Keywords:kernel  Multiple Discriminant Analysis(MDA)  Small Sample Size(S3)  face recognition
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号