首页 | 本学科首页   官方微博 | 高级检索  
     


The effect of heat treatment on tensile properties of 2D C/SiC composites
Authors:Hui Mei  Mingyang Lu  Shixiang Zhou  Laifei Cheng
Affiliation:Science and technology on Thermostructural Composite Materials Laboratory, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an, PR China
Abstract:Two-dimensional (2D) carbon fiber reinforced silicon carbide (C/SiC) composites with different initial strength were prepared by chemical vapor infiltration (CVI). After tensile property testing, results exhibited that as the heat-treatment temperature (HTT) increases to 1900°C, the tensile strength and toughness of the low strength specimen (LSS) increased by 110% and 530%, while the high strength specimen (HSS) increased by 5.4% and 550%, respectively. As observed from morphologies, the heat treatment increases the graphitization of the amorphous PyC interphase, which leads to the weakening of interfacial bonding strength (IBS). Meanwhile, the defects arising from heat treatment cause thermal residual stress relaxation. Therefore, the tensile strength and toughness of LSS with relatively high initial IBS increase significantly as HTT increases. For HSS with moderate initial IBS, the heat treatment slightly improves the tensile strength, but significantly improves the toughness. Consequently, the post-heat-treatment tensile properties of 2D C/SiC composites can be regulated by varying HTTs and different initial strength.
Keywords:2D C/SiC composites  heat treatment  interfaces  mechanical properties
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号