首页 | 本学科首页   官方微博 | 高级检索  
     


Graph-based representations and techniques for image processing and image analysis
Authors:A. Sanfeliu,R. Alqué  zar,J. Andrade,J. Climent,F. Serratosa,J. Vergé  s
Affiliation:
  • a Institut de Robòtica i Informàtica Industrial, Universitat Politècnica de Catalunga---Csic, Llorens I Artigas 4-6, 2a pl.,Barcelona, Spain
  • b Dept. de Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunga, Barcelona, Spain
  • c Dept. d’Enginyeria de Sistemes, Automàtica i Informatica i Informatica Industrial, Universitat Politècnica de Catalunga, Barcelona, Spain
  • d Dept. d’Enginyeria Informàtica, Universitat Rovira i Virgili, Tarragona, Spain
  • Abstract:In this paper we will discuss the use of some graph-based representations and techniques for image processing and analysis. Instead of making an extensive review of the graph techniques in this field, we will explain how we are using these techniques in an active vision system for an autonomous mobile robot developed in the Institut de Robòtica i Informàtica Industrial within the project “Active Vision System with Automatic Learning Capacity for Industrial Applications (CICYT TAP98-0473)”. Specifically we will discuss the use of graph-based representations and techniques for image segmentation, image perceptual grouping and object recognition. We first present a generalisation of a graph partitioning greedy algorithm for colour image segmentation. Next we describe a novel fusion of colour-based segmentation and depth from stereo that yields a graph representing every object in the scene. Finally we describe a new representation of a set of attributed graphs (AGs), denominated function-described graphs (FDGs), a distance measure for matching AGs with FDGs and some applications for robot vision.
    Keywords:Structural pattern recognition   Graph-based representations   Object recognition   Color image segmentation   Perceptual grouping   Data fusion   Depth from stereo   Attributed graphs   Function-described graphs   Distance measure between graphs
    本文献已被 ScienceDirect 等数据库收录!
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号