首页 | 本学科首页   官方微博 | 高级检索  
     

基于RBF网络的粮食水分检测数据融合研究
引用本文:薛海燕,邹丽霞. 基于RBF网络的粮食水分检测数据融合研究[J]. 计算机与现代化, 2011, 0(6): 103-107. DOI: 10.3969/j.issn.1006-2475.2011.06.029
作者姓名:薛海燕  邹丽霞
作者单位:1. 郑州航空工业管理学院计算机科学与应用系,河南,郑州,450015
2. 河南广播电视大学计算机系,河南,郑州,450005
摘    要:为了提高测量的准确性和快捷性,需要融合处理多传感器检测的数据。本文首先介绍BRF网络的特性和训练方式,然后进行样本数据采集、样本数据归一化、神经网络的训练及其结构的确定,完成基于RBF网络的水分检测数据处理过程,实现粮食水分检测中的多传感数据融合。经过Matlab中的神经网络模型训练后,实验结果表明,拟合值始终在目标值上下波动,波动的范围在7%以内,该方法具有较大的优越性,可在其它工业领域中推广应用。

关 键 词:数据融合  径向基函数网络  水分检测

Research on Grain Moisture Detection Data Fusion Based on RBF Network
XUE Hai-yan,ZOU Li-xia. Research on Grain Moisture Detection Data Fusion Based on RBF Network[J]. Computer and Modernization, 2011, 0(6): 103-107. DOI: 10.3969/j.issn.1006-2475.2011.06.029
Authors:XUE Hai-yan  ZOU Li-xia
Affiliation:XUE Hai-yan1,ZOU Li-xia2(1.Dept.of Computer Science and Application,Zhengzhou Institute of Aeronautical Industry Management,Zhengzhou 450015,China,2.Dept.of Computer,Henan Radio and Television University,Zhengzhou 450005,China)
Abstract:For improving the accuracy and speed of measurement,it needs to deal with the data from multi-sensors.Firstly,this paper introduces the characters and training mode of BRF network,and then describes the whole processes,which includes data collection,data normalization,neural network training and network structure selection,using multi-sensors to detect the grain moisture based on BRF network.Lastly,trained by the net models in Matlab,the results prove that the fitted value fluctuates around target values an...
Keywords:data fusion  BRF network  moisture detection  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号