首页 | 本学科首页   官方微博 | 高级检索  
     


Behavior of intact and damaged honeycombs: a finite element study
Authors:X.Edward Guo  Lorna J. Gibson
Affiliation: Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA;* Bone Engineering Laboratory, Department of Mechanical Engineering and Center for Biomedical Engineering, Columbia University, New York, NY 10027, USA
Abstract:The Young’s moduli, the elastic buckling strength and the plastic collapse strength of regular honeycombs with defects consisting of missing cells in the structure were analyzed using the finite element method. The behavior of intact honeycombs was first analyzed; the results of this numerical study are consistent with those of previous analyses. The effect of single, isolated defects of varying sizes and the effect of the separation distance between two defects on the elastic and plastic behaviors were then analyzed. Single, isolated defects reduce the modulus and strength. The elastic buckling strength of a honeycomb with a defect normalized by the intact strength decreases directly with the ratio of the minimum net cross-sectional area normalized by the intact cross-sectional area. The plastic collapse strength of a honeycomb with a defect normalized by the intact strength decreases less rapidly than the ratio of the minimum net cross-sectional area normalized by the intact cross-sectional area. Two closely spaced, separate defects interact to reduce the elastic buckling strength of a honeycomb; at a separation distance of about ten cells separate defects act independently. The separation distance between two defects has little effect on the Young’s modulus or the plastic collapse strength of a honeycomb. The finite element analysis allows localization behavior to be studied: we find that the localization strain decreases with increasing Image.
Keywords:cellular materials   honeycombs   elastic moduli   compressive strength
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号