首页 | 本学科首页   官方微博 | 高级检索  
     


Texture-based features for classification of mammograms using decision tree
Authors:Aswini Kumar Mohanty  Manas Ranjan Senapati  Swapnasikta Beberta  Saroj Kumar Lenka
Affiliation:1. SOA University, Bhubaneswar, Odisha, India
2. Department of Computer Science, Krupajal Engineering College, Bhubaneswar, Odisha, India
3. BPUT, Rourkela, Odisha, India
4. Department of Computer Science, Mody Univesity, Lakshmangarh, 332311, Rajasthan, India
Abstract:Mammogram—breast X-ray—is considered the most effective, low cost, and reliable method in early detection of breast cancer. Although general rules for the differentiation between benign and malignant breast lesions exist, only 15–30 % of masses referred for surgical biopsy are actually malignant. In this work, an approach is proposed to develop a computer-aided classification system for cancer detection from digital mammograms. The proposed system consists of three major steps. The first step is region of interest (ROI) extraction of 256 × 256 pixels size. The second step is the feature extraction; we used a set of 19 GLCM and GLRLM features, and the 19 (nineteen) features extracted from gray-level run-length matrix and gray-level co-occurrence matrix could distinguish malignant masses from benign masses with an accuracy of 96.7 %. Further analysis was carried out by involving only 12 of the 19 features extracted, which consists of 5 features extracted from GLCM matrix and 7 features extracted from GLRL matrix. The 12 selected features are as follows: Energy, Inertia, Entropy, Maxprob, Inverse, SRE, LRE, GLN, RLN, LGRE, HGRE, and SRLGE; ARM with 12 features as prediction can distinguish malignant mass image and benign mass with a level of accuracy of 93.6 %. Further analysis showed that area under the receiver operating curve was 0.995, which means that the accuracy level of classification is good or very good. Based on that data, it was concluded that texture analysis based on GLCM and GLRLM could distinguish malignant image and benign image with considerably good result. The third step is the classification process; we used the technique of decision tree using image content to classify between normal and cancerous masses. The proposed system was shown to have the large potential for cancer detection from digital mammograms.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号