首页 | 本学科首页   官方微博 | 高级检索  
     

入侵检测系统中基于变量相似性特征选择
引用本文:朱永宣 单莘 郭军. 入侵检测系统中基于变量相似性特征选择[J]. 微电子学与计算机, 2005, 22(10): 34-36,39
作者姓名:朱永宣 单莘 郭军
作者单位:北京邮电大学信息工程学院,北京100876
基金项目:国家自然科学基金项目(60475007)教育部跨世纪人才基金项目(02029)
摘    要:ReliefF是一种在很多场合经常使用的filter式的特征选择方法.然而该方法的一大缺点是不能辨别冗余特征。基于ReliefF算法提出一种混合的有监督的特征选择算法。该算法首先利用ReliefF算法去除与分类无关的以及权重低于一定阈值的特征,然后采用一种变量相似性准则来去除冗余特征。在实际的数据集KDDCUP'99上进行的实验结果表明该混合特征选择方法较单独使用ReliefF方法在分类精度上有一定的提高。

关 键 词:入侵检测系统 变量相似性 有监督特征选择 冗余特征 ReliefF算法
文章编号:1000-7180(2005)10-034-03
收稿时间:2005-07-28
修稿时间:2005-07-28

Feature Selection Method Based on Variable Similarity in Intrusion Detection System
ZHU Yong-xuan, SHAN Xin, GUO Jun. Feature Selection Method Based on Variable Similarity in Intrusion Detection System[J]. Microelectronics & Computer, 2005, 22(10): 34-36,39
Authors:ZHU Yong-xuan   SHAN Xin   GUO Jun
Affiliation:School of Information Engineering, Beijing University of Posts and Telecommunications, Beijing 100876
Abstract:ReliefF is a filter's feature selection method which is often used in many cases, while the method cannot discriminate redundant features which is a serious defect. This paper proposes a mixed and supervised feature selection algorithm based on ReliefF. The algorithm first uses ReliefF to get rid of irrelevant features and the features which have lesser weight value than predetermined threshold, then uses a variable similarity measure for eliminating redundant features. The experimental results on real KDD CUP'99 dataset show that this mixed feature selection method is superior to the method using ReliefF solely on classification accuracy.
Keywords:Intrusion detection system   Variable similarity   Supervised feature selection   Redundancy feature   ReliefF algorithm
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号