首页 | 本学科首页   官方微博 | 高级检索  
     


Optimization of rapid thermal processing for uniform temperature distribution on wafer surface
Authors:Hyuck-Keun Oh  Sae Byul Kang  Young Ki Choi  Joon Sik Lee
Affiliation:(1) Scholl of Mechanical & Aerospace Engineering, Seoul National University, Seoul, 151-742, Korea;(2) Korea Institute of Energy Research, Daejeon, 305-343, Korea;(3) School of Mechanical Engineering, Chung Ang University, Seoul, 156-756, Korea
Abstract:An optimization of rapid thermal processing (RTP) was conducted to obtain uniform temperature distribution on a wafer surface by using linear programming and radiative heat transfer modeling. The results show that two heating lamp zones are needed to maintain uniform wafer temperature and the optimal lamp positions are unique for a given geometry and not affected by wafer temperatures. The radii of heating lamps, which were obtained by optimization, are 45 mm and 108 mm. The emissivity and temperature of the chamber wall do not significantly affect the optimal condition. With obtained optimum geometry of the RTP chamber and lamp positions, the wafer surface temperatures were calculated. The uniformity allowance of the wafer surface is less than ±1°C when the mean temperature of the wafer surface is 1000°C. This paper was recommended for publication in revised form by Associate Editor Dongsik Kim Hyuck-Keun Oh received the B.S. and M.S degrees in Mechanical & Aerospace Engineering from Seoul National University in 2000 and 2002, respectively. He had experienced mechanical and electrical engineering in the Samsung SDI Corporation on various display devices between 2002 and 2007. He is now pursuing the Ph.D degree in Mechanical & Aerospace engineering at Seoul National University, Korea. His research interests are heat transfer and thermal management with a focus on power generation and energy efficiency. Sae Byul Kang received the B.S degree in Mechanical engineering from Korea University in 1996. He then went on to receive his M.S and Ph.D. degrees from Seoul National University in 1998 and 2003, respectively. Dr. Kang is currently a senior researcher at the Korea Institute of Energy Research in Daejeon, Korea. Dr. Kang’s research interests are development of industrial boiler and burner for bio-mass. Young Ki Choi received the B.S and M.S degrees in Mechanical engineering from Seoul National University in 1978 and 1980, respectively and the Ph.D. de-gree in mechanical engineering from the University of California at Berkeley in 1986. He is currently a professor at the School of Mechanical Engineering, Chung Ang University, Korea. His research interests are in the area of micro/nanoscale energy conversion and transport, computational fluid dynamics, and molecular dynamics simulations. Joon Sik Lee received the B.S and M.S degrees in Mechanical engineering from Seoul National University in 1976 and 1980, respectively and the Ph.D. degree in mechanical engineering from the University of California at Berkeley in 1985. He is currently a professor at the School of Mechanical & Aerospace Engineering, Seoul National University, Korea. He is also the director of Micro Thermal System Research Center. His research interests are in the area of micro/nanoscale energy conversion and transport, thermal management for power generation and energy efficiency, and various convective heat transport phenomena such as pool boiling and nanofluid.
Keywords:Linear programming  Optimization  Rapid thermal processing  Uniform wafer temperature
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号