首页 | 本学科首页   官方微博 | 高级检索  
     

FCM燃料堆内行为模拟及结构设计研究
引用本文:周毅,刘仕超,陈平,李垣明,辛勇,刘振海,张林,谷明非,赵艳丽,乐韵琳. FCM燃料堆内行为模拟及结构设计研究[J]. 核动力工程, 2020, 41(5): 197-200. DOI: 10.13832/j.jnpe.2020.05.0197
作者姓名:周毅  刘仕超  陈平  李垣明  辛勇  刘振海  张林  谷明非  赵艳丽  乐韵琳
作者单位:中国核动力研究设计院核反应堆系统设计技术重点实验室,成都,610213,中国核动力研究设计院核反应堆系统设计技术重点实验室,成都,610213,中国核动力研究设计院核反应堆系统设计技术重点实验室,成都,610213,中国核动力研究设计院核反应堆系统设计技术重点实验室,成都,610213,中国核动力研究设计院核反应堆系统设计技术重点实验室,成都,610213,中国核动力研究设计院核反应堆系统设计技术重点实验室,成都,610213,中国核动力研究设计院核反应堆系统设计技术重点实验室,成都,610213,中国核动力研究设计院核反应堆系统设计技术重点实验室,成都,610213,中国核动力研究设计院核反应堆系统设计技术重点实验室,成都,610213,南华大学核科学技术学院,湖南衡阳,421001
摘    要:本文采用二维特征模型模拟不同无燃料区厚度全陶瓷微封装弥散(FCM)燃料的热力学行为,在保证堆芯装载要求的条件下,研究不同结构FCM燃料SiC基体和包覆燃料颗粒SiC层的应力状态。通过优化无燃料区厚度,调整TRISO颗粒间的间距,保证无燃料区和SiC层同时具有较低的应力水平。分析了无燃料区厚度为100~500μm时基体SiC、无燃料区以及SiC层的应力分布,结果表明,基体SiC和SiC层最大应力随无燃料区厚度增大而增大,而无燃料区的最大应力则随其厚度增大而降低。当无燃料区厚度为400μm时,无燃料区和SiC层均处于较低的应力状态,无燃料区SiC基体应力约为400 MPa,而SiC层的最大环向应力约为200MPa,其失效概率约为2.5×10-4。因此,当无燃料区厚度为400μm时,FCM燃料既能维持芯块结构完整,又能保证SiC层具有较低的失效概率。结构优化为FCM燃料的应用提供了基础。

关 键 词:FCM燃料  热力学行为  结构优化  失效概率

In-pile Performance Simulation and Structure Design of Fully Ceramics Microencapsulated Fuel
Zhou Yi,Liu Shichao,Chen Ping,Li Yuanming,Xin Yong,Liu Zhenhai,Zhang Lin,Gu Mingfei,Zhao Yanli,Le Yunlin. In-pile Performance Simulation and Structure Design of Fully Ceramics Microencapsulated Fuel[J]. Nuclear Power Engineering, 2020, 41(5): 197-200. DOI: 10.13832/j.jnpe.2020.05.0197
Authors:Zhou Yi  Liu Shichao  Chen Ping  Li Yuanming  Xin Yong  Liu Zhenhai  Zhang Lin  Gu Mingfei  Zhao Yanli  Le Yunlin
Abstract:The thermal mechanical performance of the fully ceramics microencapsulated fuel (FCM) with different non-fuel part size was simulated using two-dimensional characteristic unit. When the fissile loading meet the requirements of the reactor core, the stress condition of SiC matrix and SiC layers were investigated for FCM pellets with different structures. Non-fuel parts and SiC layers suffered relative lower stress by optimizing FCM pellet structure and adjusting distance between different TRISO particles. The stress distribution of matrix, non-fuel part and SiC layer was discussed for the FCM pellets with non-fuel part size from 100 μm to 500 μm. The results indicate that, the maximum hoop stress of the matrix and SiC layer increased with the increasing of non-fuel part size, while the non-fuel parts exhibited crosscurrent. Non-fuel parts and SiC layer possessed lower stress when the non-fuel part was 400 μm. The stress of non-fuel part was about 400 MPa, and the maximum hoop stress of the SiC layers were about 200 MPa. The failure probability was 2.5×10-4. The structure integrity was maintained for the pellets with 400 μm non-fuel part, at the same time the failure probability SiC layer was low. Structural optimization is the basis for the application of FCM pellet. 
Keywords:
本文献已被 万方数据 等数据库收录!
点击此处可从《核动力工程》浏览原始摘要信息
点击此处可从《核动力工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号