基于多类数据分类的改进克隆选择算法 |
| |
作者姓名: | 郑仙花 骆炎民 |
| |
作者单位: | 1. 华侨大学产学研基地,福建 厦门 3610082. 华侨大学 计算机科学与技术学院,福建 厦门 361021 |
| |
基金项目: | 福建省自然科学基金资助项目(2012J01273);泉州市科技计划项目(2010Z53) |
| |
摘 要: | 针对传统的克隆选择算法(CSA)只依次单独针对某一类样本数据进行监督学习从而造成分类效率和精确度不高的问题,提出一种基于改进克隆选择算法的多类监督分类算法。算法通过进化学习可以同时获得多类样本数据的最佳聚类中心,进化过程中抗体适度值的计算综合考虑各类的类内相似性和类间差异性,从而保证得到的最佳聚类中心更具代表性。后续的分类实验中,分别利用常用的4组UCI数据和红树林多光谱TM遥感图像对算法进行验证,实验结果表明遥感图像的分类总精度达到92%,Kappa系数为0.91,UCI数据分类结果也较好,证明该算法是一种有效的多类数据分类算法。
|
关 键 词: | 人工免疫 克隆选择 分类 马氏距离 |
收稿时间: | 2012-05-30 |
修稿时间: | 2012-07-17 |
本文献已被 CNKI 等数据库收录! |
| 点击此处可从《计算机应用》浏览原始摘要信息 |
|
点击此处可从《计算机应用》下载全文 |
|