首页
|
本学科首页
官方微博
|
高级检索
全部学科
医药、卫生
生物科学
工业技术
交通运输
航空、航天
环境科学、安全科学
自然科学总论
数理科学和化学
天文学、地球科学
农业科学
哲学、宗教
社会科学总论
政治、法律
军事
经济
历史、地理
语言、文字
文学
艺术
文化、科学、教育、体育
马列毛邓
全部专业
中文标题
英文标题
中文关键词
英文关键词
中文摘要
英文摘要
作者中文名
作者英文名
单位中文名
单位英文名
基金中文名
基金英文名
杂志中文名
杂志英文名
栏目中文名
栏目英文名
DOI
责任编辑
分类号
杂志ISSN号
基于DBN-SVDD的滚动轴承性能退化评估方法
作者姓名:
程道来
魏婷婷
潘玉娜
马向华
作者单位:
1.上海应用技术大学城市建设与安全工程学院;2.上海应用技术大学机械工程学院;3.上海应用技术大学轨道交通学院;4.上海应用技术大学电气与电子工程学院
基金项目:
国家重点研发计划(2020YFB2007700)
摘 要:
针对现有性能退化评估方法需要人工经验筛选特征指标,难以获取轴承故障状态下振动信号的问题,提出了一种基于深度置信网络(DBN)和支持向量数据描述(SVDD)相结合的滚动轴承性能退化评估方法。该方法以滚动轴承正常状态下的归一化幅值谱作为DBN的输入,利用DBN中的RBM构建特征自动提取模型,通过SVDD构建评估模型。使用不同工况下滚动轴承全寿命周期试验数据的分析表明,该方法能够很好地揭示轴承性能退化规律,而且摆脱了特征选择的人为干预,可以准确检测出滚动轴承早期微弱故障。
关 键 词:
滚动轴承
性能退化
神经网络
深度置信网络
支持向量数据描述
本文献已被
CNKI
等数据库收录!
点击此处可从《轴承》浏览原始摘要信息
点击此处可从《轴承》下载全文
设为首页
|
免责声明
|
关于勤云
|
加入收藏
Copyright
©
北京勤云科技发展有限公司
京ICP备09084417号