首页 | 本学科首页   官方微博 | 高级检索  
     

最小二乘支持向量机在电梯故障诊断中的应用(英文)
引用本文:郑建军,陈志军,杜克峰. 最小二乘支持向量机在电梯故障诊断中的应用(英文)[J]. 机床与液压, 2012, 40(12): 43-50
作者姓名:郑建军  陈志军  杜克峰
作者单位:1. 新疆大学电气工程学院,乌鲁木齐,830047
2. 哈尔滨工业大学航天学院,哈尔滨,150001
基金项目:Key projects of Department of Education of Xinjiang Uygur Autonomous Region of China ( ID: XJEDU2010I07) ;Ministry of Science and Technology Innovation Fund of China ( ID:11C26216506453)
摘    要:针对电梯故障诊断中特征提取困难和故障样本数量少问题,提出了应用小波包分解和最小支持向量机( LS-SVM) 相结合进行电梯急停智能故障诊断的方法。借助小波包分解,该方法首先提取电梯轿厢振动信号作为特征向量,然后利用 LS-SVM 分类模型对故障进行辨识。实验证明,小波包与 LS-SVM 相融合的故障诊断与识别技术可发挥两者的优势,该方法对电梯急停故障的诊断具有较好的诊断效果。

关 键 词:故障诊断  特征提取  最小二乘支持向量机  小波包  电梯

Research on Diagnosis Method of Elevator Fault Based on LS-SVM
ZHENG Jianjun , CHEN Zhijun , DU Kefeng. Research on Diagnosis Method of Elevator Fault Based on LS-SVM[J]. Machine Tool & Hydraulics, 2012, 40(12): 43-50
Authors:ZHENG Jianjun    CHEN Zhijun    DU Kefeng
Affiliation:1. Electrical Engineering College, Xinjiang University, Urumqi 830047, China; 2. Center for Control Theory and Guidance Technology, Harbin Institute of Technology, Harbin 150001, China
Abstract:Aimed at the puzzle of being difficult to extract the fault features and less in fault data sample, the paper proposed a sort of diagnosis method of elevator fault based on least square support vector machine(LS-SVM). By means of wavelet packet analysis and LS-SVM, it firstly extracted the elevator fault data samples by wavelet packet analysis, and then identified the elavator fault based on their characteristics by use of LS-SVM. The test data of actual experiment demonstrsted that it has better performance in diagnosis for jerk fault by the proposed method. The research result shows that it is excellent in diagnosis performance.
Keywords:fault diagnosis  feature extracting  least square support vector machine (LS-SVM)  wavelet packet  elevator
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号