首页 | 本学科首页   官方微博 | 高级检索  
     


Numerical investigation of crack tip strain localization under cyclic loading in FCC single crystals
Authors:Nipal Deka  Krishna N Jonnalagadda
Affiliation:1.Department of Mechanical Engineering,Indian Institute of Technology Bombay,Mumbai,India
Abstract:In this work, the crack tip strain localization in a face centered cubic single crystal subject to both monotonic and cyclic loading was investigated. The effect of constraint was implemented using T-stress and strain accumulation was studied for both isotropic and anisotropic elastic cases with the appropriate application of remote displacement fields in plane strain. Modified boundary layer simulations were performed using the crystal plasticity finite element framework. The consideration of elastic anisotropy amplified the effect of constraint level on stress and plastic strain fields near the crack tip indicating the importance of its use in fracture simulations. In addition, to understand the cyclic stress and strain behavior in the vicinity of the crack tip, combined isotropic and kinematic hardening laws were incorporated, and their effect on the evolution of yield curves and plastic strain accumulation were investigated. With zero-tension cyclic load, the evolution of plastic strain and Kirchhoff stress components showed differences in magnitudes between isotropic and anisotropic elastic cases. Furthermore, under cyclic loading, ratcheting was observed along the localized slip bands, which was shown to be affected by T-stress as well as elastic anisotropy. Negative T-stress increased the accumulation of plastic strain with number of cycles, which was further amplified in the case of elastic anisotropy. Finally, in all the cyclic loading simulations, the plastic strain accumulation was higher near the \(55^0 \) slip band.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号