首页 | 本学科首页   官方微博 | 高级检索  
     


Analysis of liquid flow through ceramic porous media used for molten metal filtration
Authors:F A Acosta G  A H Castillejos E  J M Almanza R  A Flores V
Affiliation:(1) Investigation Center and Advanced Studies of the IPN, CINVESTAV-Unidad Saltillo, Saltillo, 25000 Coah, Mexico
Abstract:A two-dimensional mathematical model has been developed to study fluid flow inside ceramic foam filters, used for molten metal filtration, as a function of their structural characteristics. The model is based on the selection of a unit cell, geometric model, formed by two interconnected half-pores. The good agreement between experimental and computed permeabilities showed that the unit cell model approximates very well the effect of filter structure on the flow conditions inside the filter. The validity of the model is supported by the fact that permeabilities are calculated from directly measured structural parameters,i.e., without the introduction of any fitting variable, such as tortuosity. The laminar flow solutions for the Navier-Stokes equation, in steady state, were obtained numerically using the control-volume method. The boundary of the unit cell was represented through axisymmetrical, body-fitted coordinates to obtain a better representation of the complex pore shape. The generality of the model, to study fluid flow in reticulated media, was tested by comparing the computed specific permeabilities with values measured for ceramic foam filters and for the new ceramic filter of lost packed bed (CEFILPB). Such a comparison shows good agreement and discloses a fundamental property of the last kind of porous medium: the critical porosity. The model indicates how porosity and pore dimensions of reticulated filters may be tailored to meet specific fluid flow requirements.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号