首页 | 本学科首页   官方微博 | 高级检索  
     


Adaptive Channel Estimation Using Pilot-Embedded Data-Bearing Approach for MIMO-OFDM Systems
Authors:Pirak  C Wang  Z J Liu  K J R Jitapunkul  S
Affiliation:Dept. of Electr. & Comput. Eng., Maryland Univ., College Park, MD;
Abstract:Multiple-input multiple-output (MIMO) orthogonal-frequency-division-multiplexing (OFDM) systems employing coherent receivers crucially require channel state information (CSI). Since the multipath delay profile of channels is arbitrary in the MIMO-OFDM systems, an effective channel estimator is needed. In this paper, we first develop a pilot-embedded data-bearing (PEDB) approach for joint channel estimation and data detection, in which PEDB least-square (LS) channel estimator and maximum-likelihood (ML) data detection are employed. Then, we propose an LS fast Fourier transform (FFT)-based channel estimator by employing the concept of FFT-based channel estimation to improve the PEDB-LS one via choosing a certain number of significant taps for constructing a channel frequency response. The effects of model mismatch error inherent in the proposed LS FFT-based estimator when considering noninteger multipath delay profiles and its performance analysis are investigated. The relationship between the mean-squared error (MSE) and the number of chosen significant taps is revealed, and hence, the optimal criterion for obtaining the optimum number of significant taps is explored. Under the framework of pilot embedding, we further propose an adaptive LS FFT-based channel estimator employing the optimum number of significant taps to compensate the model mismatch error as well as minimize the corresponding noise effect. Simulation results reveal that the adaptive LS FFT-based estimator is superior to the LS FFT-based and PEDB-LS estimators under quasi-static channels or low Doppler's shift regimes
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号