首页 | 本学科首页   官方微博 | 高级检索  
     


Intrinsic constraints in space-time filtering: a new approach torepresenting uncertainty in low-level vision
Authors:Jasinchi   R.S.
Affiliation:Comput. Vision Lab., Maryland Univ., College Park, MD;
Abstract:Describes how, in the process of extracting the optical flow through space-time filtering, one has to consider the constraints associated with the motion uncertainty, as well as the spatial and temporal sampling rates of the sequence of images. The motion uncertainty satisfies the Cramer-Rao (CR) inequality, which is shown to be a function of the filter parameters. On the other hand, the spatial and temporal sampling rates have lower bounds, which depend on the motion uncertainty, the maximum support in the frequency domain, and the optical flow. These lower bounds on the sampling rates and on the motion uncertainty are constraints that constitute an intrinsic part of the computational structure of space-time filtering. The author shows that if he uses these constraints simultaneously, the filter parameters cannot be arbitrarily determined but instead have to satisfy consistency constraints. By using explicit representations of uncertainties in extracting visual attributes, one can constrain the range of values assumed by the filter parameters
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号