首页 | 本学科首页   官方微博 | 高级检索  
     


Transport of two metal oxide nanoparticles in saturated granular porous media: role of water chemistry and particle coating
Authors:Petosa Adamo Riccardo  Brennan Spencer John  Rajput Faraz  Tufenkji Nathalie
Affiliation:Department of Chemical Engineering, McGill University, 3610 University St., Montreal, Quebec, Canada H3A 2B2
Abstract:
The growing use of nanosized titanium dioxide (nTiO2) and zinc oxide (nZnO) in a large number of commercial products raises concerns regarding their release and subsequent mobility in natural aquatic environments. Laboratory-scale sand-packed column experiments were conducted with bare and polymer-coated nTiO2 and nZnO to improve our understanding of the mobility of these nanoparticles in natural or engineered water saturated granular systems. The nanoparticles are characterized over a range of environmentally relevant water chemistries using multiple complimentary techniques: dynamic light scattering, nanoparticle tracking analysis, transmission electron microscopy, and scanning electron microscopy. Overall, bare (uncoated) nanoparticles exhibit high retention within the water saturated granular matrix at solution ionic strengths (IS) as low as 0.1 mM NaNO3 for bare nTiO2 and 0.01 mM NaNO3 for bare nZnO. Bare nTiO2 and nZnO also display dynamic (time-dependent) deposition behaviors under selected conditions. In contrast, the polymer-coated nanoparticles are much less likely to aggregate and exhibit significant transport potential at IS as high as 100 mM NaNO3 or 3 mM CaCl2. These findings illustrate the importance of considering the extent and type of surface modification when evaluating metal oxide contamination potential in granular aquatic environments.
Keywords:Titanium dioxide   Zinc oxide   Nanoparticle   Transport   Nanoparticle tracking analysis   Transmission electron microscopy
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号