首页 | 本学科首页   官方微博 | 高级检索  
     

基于对抗网络人脸超分辨率重建算法研究
引用本文:蒋文杰,罗晓曙,戴沁璇. 基于对抗网络人脸超分辨率重建算法研究[J]. 计算机工程与应用, 2021, 57(11): 219-223. DOI: 10.3778/j.issn.1002-8331.2002-0370
作者姓名:蒋文杰  罗晓曙  戴沁璇
作者单位:广西师范大学 电子工程学院,广西 桂林 541004
摘    要:
由于受到光照和成像设备等条件因素的影响,采集到的单帧人脸图像分辨率低,无法进行准确人脸识别,所以需要图像超分辨率重建.而利用SRGAN模型在进行人脸超分辨率重建过程中,易出现梯度消失或爆炸的问题,严重影响了重建图像的精度和质量.针对上述问题,提出了基于生成对抗网络的改进人脸超分辨率重建算法,在SRGAN结合WGA-N的...

关 键 词:人脸超分辨率重建  生成对抗网络  Wasserstein距离  Wasserstein散度

Research on Face Super-Resolution Reconstruction Algorithm Based on Generative Adversarial Networks
JIANG Wenjie,LUO Xiaoshu,DAI Qinxuan. Research on Face Super-Resolution Reconstruction Algorithm Based on Generative Adversarial Networks[J]. Computer Engineering and Applications, 2021, 57(11): 219-223. DOI: 10.3778/j.issn.1002-8331.2002-0370
Authors:JIANG Wenjie  LUO Xiaoshu  DAI Qinxuan
Affiliation:College of Electronic Engineering, Guangxi Normal University, Guilin, Guangxi 541004, China
Abstract:
Due to the influence of illumination and imaging equipment and other factors, the single frame of face image collected has a low resolution, which makes it impossible to perform accurate face recognition. Therefore, image super-resolution reconstruction is required. However, in the process of face super-resolution reconstruction using SRGAN model, gradient disappearance or explosion is easy to occur, which seriously affects the accuracy and quality of the reconstructed image. According to the above problem, this paper puts forward the improvement based on the generated against network face super-resolution reconstruction algorithm, on the basis of SRGAN combination of WGA-N introduction out divergence, and to maximize its [T] get optimal scalar functions, implementation constraints can remove Lipschit-z Wassertein distance can be obtained directly, and generation network of the objective function is obtained by minimizing Wassertein distance, finally the improved model can improve the quality of reconstruction image. The experimental results show that this method can generate high-resolution face images and is better than DRCN, FSRCNN, SRGAN_WGAN, VDSR and DRRN models in both subjective and objective evaluation indexes.
Keywords:face super-resolution  generative adversarial network  Wasserstein distance  Wasserstein divergence  
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号