首页 | 本学科首页   官方微博 | 高级检索  
     

边缘计算场景下基于强化学习的应用最优部署
引用本文:马新新,管昕洁,白光伟,糜元根. 边缘计算场景下基于强化学习的应用最优部署[J]. 计算机工程与设计, 2021, 42(1): 15-23. DOI: 10.16208/j.issn1000-7024.2021.01.003
作者姓名:马新新  管昕洁  白光伟  糜元根
作者单位:南京工业大学计算机科学与技术学院,江苏南京211816;南京工业大学计算机科学与技术学院,江苏南京211816;南京工业大学计算机科学与技术学院,江苏南京211816;南京工业大学计算机科学与技术学院,江苏南京211816
基金项目:国家自然科学基金项目;江苏省自然科学基金项目
摘    要:
为有效解决城市范围内智能公共交通应用程序的布局问题,制定总代价最小化的应用布局优化策略MIN-COST,以降低应用程序部署的总代价为目标,同时满足应用程序服务延时要求。通过提出一个基于深度强化学习技术优化公交边缘应用程序部署的一般框架,可以从历史经验中学习到最优化部署方法,相对于一般启发式算法更加快速。将仿真结果与其它部署策略进行比较,验证了所提策略可以在保证服务时延的基础上有效降低应用程序服务总代价。

关 键 词:移动边缘计算  资源分配  容器技术  应用程序部署  强化学习

Optimal deployment of applications based on reinforcement learning in edge computing scenarios
MA Xin-xin,GUAN Xin-jie,BAI Guang-wei,MI Yuan-gen. Optimal deployment of applications based on reinforcement learning in edge computing scenarios[J]. Computer Engineering and Design, 2021, 42(1): 15-23. DOI: 10.16208/j.issn1000-7024.2021.01.003
Authors:MA Xin-xin  GUAN Xin-jie  BAI Guang-wei  MI Yuan-gen
Affiliation:(College of Computer Science and Technology,Nanjing Tech University,Nanjing 211816,China)
Abstract:
To solve the layout problem of intelligent public transportation applications in the city effectively,an application layout optimization strategy named MIN-COST with a minimum total cost was developed.This strategy targeted the overall cost of reducing application deployment while meeting application service latency requirements.By proposing a general framework for optimizing the deployment of public transport edge applications based on deep reinforcement learning techniques,it was possible to learn from the historical experience to optimize deployment methods,which was faster than general heuristic algorithms.Comparing its simulation results with that of other deployment strategies,it is verifies that the proposed strategy can effectively reduce the total cost of application services based on the guaranteed service delay.
Keywords:mobile edge computing  resource allocation  containers  application deployment  reinforcement learning
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号