摘 要: | 无监督的图像风格迁移是计算机视觉领域中一个非常重要且具有挑战性的问题.无监督的图像风格迁移旨在通过给定类的图像映射到其他类的类似图像.一般情况下成对匹配的数据集很难获得,这极大限制了图像风格迁移的转换模型.因此,为了避免这种限制,对现有的无监督的图像风格迁移的方法进行改进,采用改进的循环一致性对抗网络进行无监督图像风格迁移.首先为了提升网络的训练速度,避免梯度消失的现象出现,在传统的循环一致性网络生成器部分引入DenseNet网络;在提高生成器的性能方面,生成器网络部分引入attention机制来输出效果更好的图像;为了减少网络的结构风险,在网络的每一个卷积层都使用谱归一化.为了验证本文方法的有效性,在monet2photo、vangogh2photo和facades数据集上进行了实验,实验结果表明,该方法在Inception score平均分数和FID距离评价指标上均有所提高.
|