首页 | 本学科首页   官方微博 | 高级检索  
     

基于双重权重偏差建模的无监督域适应
引用本文:马闯,田青,孙赫阳,曹猛,马廷淮. 基于双重权重偏差建模的无监督域适应[J]. 计算机科学, 2021, 48(2): 217-223. DOI: 10.11896/jsjkx.200700028
作者姓名:马闯  田青  孙赫阳  曹猛  马廷淮
作者单位:南京信息工程大学计算机与软件学院 南京 210044;南京信息工程大学计算机与软件学院 南京 210044;中国科学院自动化所模式识别国家重点实验室 北京 100190;南京信息工程大学计算机与软件学院 南京 210044;南京信息工程大学计算机与软件学院 南京 210044;南京信息工程大学计算机与软件学院 南京 210044
基金项目:中国科学院模式识别国家重点实验室开放课题;江苏省自然科学基金;江苏省高校自然科学研究面上项目;模式分析与机器智能工信部重点实验室开放课题;国家自然科学基金
摘    要:无监督域适应(Unsupervised Domain Adaptation,UDA)是一类新兴的机器学习范式,其通过对源域知识在无标记目标域上的迁移利用,来促进目标域模型的训练。为建模源域与目标域之间的域分布差异,最大均值差异(Maximum Mean Discrepancy,MMD)建模被广泛应用,其对UDA的性能提升起到了有效的促进作用。然而,这些方法通常忽视了领域之间对应类规模与类分布等结构信息,因为目标域与源域的数据类规模与数据分布通常并非一致。为此,文中提出了一种基于跨域类和数据样本双重加权的无监督域适应模型(Sample weighted and Class weighted based Unsupervised Domain Adaptation Network,SCUDAN)。具体而言,一方面,通过源域类层面的适应性加权来调整源域类权重,以实现源域与目标域之间的类分布对齐;另一方面,通过目标域样本层面的适应性加权来调整目标域样本权重,以实现目标域与源域类中心的对齐。此外,文中还提出了一种CEM(Classification Expectation Maximization)优化算法,以实现对SCUDAN的优化求解。最后,通过对比实验和分析,验证了所提模型和算法的有效性。

关 键 词:无监督域适应  最大均值差异  类权重偏差  样例权重偏差  卷积神经网络

Unsupervised Domain Adaptation Based on Weighting Dual Biases
MA Chuang,TIAN Qing,SUN He-yang,CAO Meng,MA Ting-huai. Unsupervised Domain Adaptation Based on Weighting Dual Biases[J]. Computer Science, 2021, 48(2): 217-223. DOI: 10.11896/jsjkx.200700028
Authors:MA Chuang  TIAN Qing  SUN He-yang  CAO Meng  MA Ting-huai
Affiliation:(School of Computer and Software,Nanjing University of Information Science&Technology,Nanjing 210044,China;National Laboratory of Pattern Recognition,Institue of Automation,Chinese Academy of Sciences,Beijing 100190,China)
Abstract:Unsupervised domain adaptation(UDA)is a new kind of machine learning paradigm,which facilitates the training of target domain model through transferring knowledge from source domain to unlabeled target domain.In order to model the domain distribution difference between the source domain and target domain,the maximum mean discrepancy(MMD)is widely applied,it plays an effective role in promoting the performance of UDA.Usually,the class size and data distribution between the target domain and the source domain are not the same,unfortunately,these methods usually ignore this structure information.To this end,this paper proposes a model called sample weighted and class weighted based unsupervised domain adaptation network(SCUDAN).On one hand,the class distribution alignment between the source domain and the target domain is achieved through adaptive weighting on the classes of the source domain.On the other hand,the class centers between the target domain and the source domain can be aligned through adaptive weighting on the samples of the target domain.In addition,a CEM(Classification Expectation Maximization)algorithm is proposed to optimize SCUDAN.Finally,the effectiveness of the proposed method is verified by comparative experiments and analysis.
Keywords:Unsupervised domain adaptation  Maximum mean discrepancy  Class weight bias  Sample weight bias  Convolutional neural network
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号