首页 | 本学科首页   官方微博 | 高级检索  
     

基于数据挖掘的客户细分模型研究及应用
引用本文:原慧琳,杜杰,李延柯. 基于数据挖掘的客户细分模型研究及应用[J]. 计算机工程与设计, 2021, 42(1): 57-64. DOI: 10.16208/j.issn1000-7024.2021.01.009
作者姓名:原慧琳  杜杰  李延柯
作者单位:东北大学信息科学与工程学院,辽宁沈阳110000;东北大学信息科学与工程学院,辽宁沈阳110000;东北大学信息科学与工程学院,辽宁沈阳110000
基金项目:东北大学-永辉超市产学研战略合作基金项目
摘    要:
为企业更深入了解消费者的行为和偏好,帮助企业制定决策和发展客户关系,结合现有的客户细分方法,提出一种多指标客户细分模型。从宏观和微观角度,对传统指标进行优化,构建RFMPA多指标客户体系;采用熵值法客观赋权;采用因子分析降维;采用改进的K-means算法完成客户细分。利用大型连锁超市客户消费数据进行实证研究,对比数据实验结果表明,该模型能够更好解决客户细分问题,提高企业客户关系管理和决策质量。

关 键 词:聚类  客户细分  数据挖掘  多指标  RFMPA模型

Research and application of customer segmentation model based on data mining
YUAN Hui-lin,DU Jie,LI Yan-ke. Research and application of customer segmentation model based on data mining[J]. Computer Engineering and Design, 2021, 42(1): 57-64. DOI: 10.16208/j.issn1000-7024.2021.01.009
Authors:YUAN Hui-lin  DU Jie  LI Yan-ke
Affiliation:(College of Information Science and Engineering,Northeastern University,Shenyang 110000,China)
Abstract:
To understand consumers’behaviors and preferences more deeply and help enterprises make decisions and develop customer relationships,a multi index customer segmentation model was proposed based on the existing customer segmentation methods.Through data analysis technology,from the macro and micro perspectives,the traditional indicators were updated and refined to build an RFMPA customer indicator system.Objective weighting was implemented using entropy method.Data dimension reduction was carried out using factor analysis.The improved K-means algorithm was used for customer segmentation.Using the customer consumption data of a large supermarket chain for empirical research,and comparing the data experimental results,the model can better solve the problem of customer segmentation,improve the quality of enterprise customer relationship management and decision-making.
Keywords:clustering  customer segmentation  data mining  multi-indicator  RFMPA model
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号