首页 | 本学科首页   官方微博 | 高级检索  
     


Learning parallel portfolios of algorithms
Authors:Marek Petrik  Shlomo Zilberstein
Affiliation:(1) Department of Computer Science, University of Massachusetts, Amherst, MA 01003, USA
Abstract:A wide range of combinatorial optimization algorithms have been developed for complex reasoning tasks. Frequently, no single algorithm outperforms all the others. This has raised interest in leveraging the performance of a collection of algorithms to improve performance. We show how to accomplish this using a Parallel Portfolio of Algorithms (PPA). A PPA is a collection of diverse algorithms for solving a single problem, all running concurrently on a single processor until a solution is produced. The performance of the portfolio may be controlled by assigning different shares of processor time to each algorithm. We present an effective method for finding a PPA in which the share of processor time allocated to each algorithm is fixed. Finding the optimal static schedule is shown to be an NP-complete problem for a general class of utility functions. We present bounds on the performance of the PPA over random instances and evaluate the performance empirically on a collection of 23 state-of-the-art SAT algorithms. The results show significant performance gains over the fastest individual algorithm in the collection.
Keywords:Algorithm portfolios  Resource bounded reasoning  Combinatorial optimization
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号