首页 | 本学科首页   官方微博 | 高级检索  
     


Bayesian 3D shape from silhouettes
Authors:Donghoon Kim  Jonathan Ruttle  Rozenn Dahyot
Affiliation:School of Computer Science and Statistics, Trinity College Dublin, Ireland
Abstract:This paper introduces a smooth posterior density function for inferring shapes from silhouettes. Both the likelihood and the prior are modelled using kernel density functions and optimisation is performed using gradient ascent algorithms. Adding a prior allows for the recovery of concave areas of the shape that are usually lost when estimating the visual hull. This framework is also extended to use colour information when it is available in addition to the silhouettes. In these cases, the modelling not only allows for the shape to be recovered but also its colour information. Our new algorithms are assessed by reconstructing 2D shapes from 1D silhouettes and 3D faces from 2D silhouettes. Experimental results show that using the prior can assist in reconstructing concave areas and also illustrate the benefits of using colour information even when only small numbers of silhouettes are available.
Keywords:3D reconstruction from multiple view images  Shape-from-silhouettes  Kernel density estimates  K-nearest neighbours  Principal component analysis
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号