保留低阶和高阶关系的图表示深度学习集成算法 |
| |
作者姓名: | 欧阳勐涔 张应龙 夏学文 徐星 |
| |
作者单位: | 闽南师范大学计算机学院,闽南师范大学物理与信息工程学院,闽南师范大学物理与信息工程学院,闽南师范大学物理与信息工程学院 |
| |
基金项目: | 国家自然科学基金资助项目(61762036),福建省自然科学基金项目(2021J011007, 2021J011008,2022J01916) |
| |
摘 要: | 高质量学习图中节点的低维表示是当前的一个研究热点。现有浅模型的方法无法捕捉图结构的非线性关系,图神经网络技术中的图卷积模型会产生过平滑问题。同时,如何确定不同跳数关系在图表示学习中的作用亦是研究中尚需解决的问题。以解决上述问题为目的,提出一个基于T(T>1)个前馈神经网络的深度学习模型,该框架利用深度模型抽取图结构的非线性关系,T个子模型有效地捕获图的局部和全局(高阶)关系信息,并且它们在最终的向量表示中赋予了不同的作用、从而发挥不同跳数关系的优势。在顶点分类和链接预测任务中的实验结果表明,该框架比现有方法具有竞争力,对比基准算法可以获得20%左右的提升。
|
关 键 词: | 图表示 深度学习 神经网络 顶点分类 链接预测 |
收稿时间: | 2022-08-10 |
修稿时间: | 2023-03-12 |
|
| 点击此处可从《计算机应用研究》浏览原始摘要信息 |
|
点击此处可从《计算机应用研究》下载全文 |
|