首页 | 本学科首页   官方微博 | 高级检索  
     


Scalable reduction of large datasets to interesting subsets
Authors:Gregory Todd Williams   Jesse Weaver   Medha Atre  James A. Hendler  
Affiliation:a Tetherless World Constellation, Rensselaer Polytechnic Institute, Troy, NY, USA
Abstract:With a huge amount of RDF data available on the web, the ability to find and access relevant information is crucial. Traditional approaches to storing, querying, and reasoning fall short when faced with web-scale data. We present a system that combines the computational power of large clusters for enabling large-scale reasoning and data access with an efficient data structure for storing and querying the accessed data on a traditional personal computer or other resource-constrained device. We present results of using this system to load the 2009 Billion Triples Challenge dataset, materialize RDFS inferences, extract an “interesting” subset of the data using a large cluster, and further analyze the extracted data using a personal computer, all in the order of tens of minutes.
Keywords:Billion Triples Challenge   Scalability   Parallel   Inferencing   Query   Triplestore
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号