Molecular mechanisms in the control of limb regeneration: the role of homeobox genes |
| |
Authors: | DM Gardiner SV Bryant |
| |
Affiliation: | Department of Pharmacology, United Medical and Dental Schools, St Thomas's Hospital, London, UK. |
| |
Abstract: | The Ca2+ sensitivity of cardiac myofibrillar force production can be decreased by acidosis or inorganic phosphate (P(i)) and increased by caffeine. To investigate whether the source of tissue influences the potency of these agents, we compared the actions of acidosis (change of pH from 7.0 to 6.2), P(i) and caffeine (both 20 mM) on force production of skinned cardiac muscles from adult ventricle, adult atrium and neonate ventricle of the rat. Maximum Ca(2+)-activated force was reduced by all three interventions and the responses of the different muscle types to a given intervention were similar. Acidosis reduced myofibrillar Ca2+ sensitivity by 1.09 and 1.04 pCa units in adult ventricle and atrium, respectively, and P(i) reduced it by 0.19 and 0.22 pCa units. However, each effect was only one-third as great in the neonate ventricle, which showed falls of 0.33 pCa units for acidosis and 0.06 for P(i). In contrast, caffeine raised the Ca2+ sensitivity by the same amount (approximately 0.4 pCa units) in all three muscle types. The differential effect between adult and neonate seen with both acidosis and P(i) suggests some similarity in the mechanisms by which these factors decrease Ca2+ sensitivity. In contrast, the equal effects of caffeine on neonate and adult suggests that caffeine acts by a completely different mechanism. The lower pH- and P(i)-sensitivity of the neonatal ventricle can help to explain why neonatal and adult myocardium exhibit differential force responses to ischaemia (or hypoxia alone). |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|