首页 | 本学科首页   官方微博 | 高级检索  
     


Electrolytic methanogenic-methanotrophic coupling for tetrachloroethylene bioremediation: proof of concept
Authors:Guiot Serge R  Cimpoia Ruxandra  Kuhn Ramona  Alaplantive Aude
Affiliation:National Research Council, Biotechnology Research Institute, 6100 Royalmount Avenue, Montreal, QC H4P 2R2, Canada. serge.guiot@cnrc-nrc.gc.ca
Abstract:Coupling of methanogenic and methanotrophic catabolisms was performed in a single-stage technology equipped with a water electrolysis cell placed in the effluent recirculation loop. The electrolysis-generated hydrogen served as an electron donor for both bicarbonate reduction into CH4 and reductive dechlorination, while the O2 and CH4, supported the cometabolic oxidation of chlorinated intermediates left over by the tetrachloroethylene (PCE) transformation. The electrolytical methanogenic/methanotrophic coupled (eMaMoC) process was tested in a laboratory-scale setup at PCE loads ranging from 5 to 50 micromol/L(rx) x d (inlet concentrations from 4 to 11 mg/L), and at various hydraulic residence times (HRT). Degradation followed essentially a reductive dechlorination pathway from PCE to cis-1,2-dichloroethene (DCE), and an oxidative pathway from DCE to CO2. PCE reductive dechlorination to DCE was consistently over 98% while a maximum oxidative DCE mineralization of 89% was obtained at a load of 4.3 micromol PCE/ L(rx) x d and an HRT of 6 days. Controlling dissolved oxygen concentrations within a relatively low range (2-3 mg/L) seemed instrumental to sustain the overall degradation capacity. Degradation kinetics were further evaluated: the apparent half-saturation constant (K(s)) had to be set relatively high (29 microM) for the simulated data to best fit the experimental ones. In spite of such kinetic limitations, the eMaMoC system, while fueled by water electrolysis, was effective in building and sustaining a functional methanogenic/methanotrophic consortium capable of significant PCE mineralization in a single-stage process. Hence, degradation standards are within reach so long as the methanotrophic DCE-oxidizing potential, including substrate affinity, are optimized and HRT accordingly adjusted.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号