首页 | 本学科首页   官方微博 | 高级检索  
     


A low data requirement model of a variable-speed vapour compression refrigeration system based on neural networks
Authors:J. Navarro-Esbrí  , V. Berbegall, G. Verdu, R. Cabello,R. Llopis
Affiliation:

aDepartment of Mechanical Engineering and Construction, University Jaume I, Campus de Riu Sec, E-12071 Castellón, Spain

bDepartment of Chemical and Nuclear Engineering, Polytechnic University of Valencia, Camino de Vera S/N, E-46071 Valencia, Spain

Abstract:In this work a model of a vapour compression refrigeration system with a variable-speed compressor, based on a black-box modelling technique, is presented. The kernel of the model consists of a full customized radial basis function network, which has been developed to accurately predict the performance of the system with low cost data requirement in terms of input variables and training data. The work also presents a steady state validation of the model inside and outside the training data set, finding, in both cases, a good agreement between experimental values and those predicted by the model. These results constitute a first step to go through future research on fault detection and energy optimisation in variable-speed refrigeration systems.
Keywords:Refrigeration   Air conditioning   Compression system   Variable speed   Compressor   Modelling   Neuronal network   Energy consumption   Detection   Anomaly

Mots clés: Réfrigération   Conditionnement d’air   Système à compression   Vitesse variable   Compresseur   Modélisation   Réseau neuronal   Consommation d’énergie   Détection   Anomalie

本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号